Significance and Impact of the Study: Citric acid (CA) is an antimicrobial molecule with three ionization states that exist in an equilibrium directly governed by pH. Traditionally, non-ionized CA was considered more antimicrobial, presumably due to the combined effects of the molecule and the acidic environment in which it occurs. By decoupling the antimicrobial impact of pH and CA on Gram-negative bacteria, it is demonstrated, for the first time, that the fully ionized CA species alone was the most effective at destroying the bacteria. The results from SEM imaging and surface-charge measurements provide further insight into the antimicrobial mode of action of CA against bacteria.
Formation of non-sessile, auto-aggregated cells of Staphylococcus aureus contributes to surface colonization and biofilm formation, hence play a major role in the early establishment of infection and in tolerance to antimicrobials. Understanding the mechanism of aggregation and the impact of aggregation on the activity of antimicrobials is crucial in achieving a better control of this important pathogen. Previously linked to biological phenomena, physical interactions leading to S. aureus cellular aggregation and its protective features against antimicrobials remain unraveled. Herein, in-vitro experiments coupled with XDLVO simulations reveal that suspensions of S. aureus cells exhibit rapid, reversible aggregation (> 70%) in part controlled by the interplay between cellular hydrophobicity, surface potential and extracellular proteins. Changing pH and salt concentration in the extracellular media modulated the cellular surface potential but not the hydrophobicity which remained consistent despite these variations. A decrease in net cellular negative surface potential achieved by decreasing pH or increasing salt concentrations, caused attractive forces such as the hydrophobic and cell–protein interactions to prevail, favoring immediate aggregation. The aggregation significantly increased the tolerance of S. aureus cells to quaternary ammonium compounds (QAC). The well-dispersed cell population was completely inactivated within 30 s whereas its aggregated counterpart required more than 10 min.
A method for microscopic enumeration of viable Salmonella enterica in meat samples was developed by using the LIVE/DEAD BacLight kit technology. A two-step centrifugation and wash process was developed to clean the samples from food and chemical impurities that might otherwise interfere with the appropriate staining reactions. The accuracy of the BacLight kit-based viability assessments was confirmed with various validation tests that were conducted by following the manufacturer's instructions. For the biocide challenge tests, chicken parts each bearing around 8.5 log of S. enterica were sprayed with common food sanitizers such as 1,3-dibromo-5,5-dimethylhydantoin (DBDMH), lactic acid (LA), and peracetic acid (PAA). The log reduction (LR) of S. enterica for each test biocide was evaluated by microscopic and conventional culture plate methods. The results show that both LA and PAA treatments generated a greater number of microscopic counts compared with the corresponding plate counts with differences being around half a log. This discrepancy is believed to occur when cells enter a so-called viable but nonculturable (VBNC) state, and to our knowledge, this is the first report documenting the presence of VBNC in PAA- and LA-treated food samples. In contrast, the BacLight-based viable counts were comparable to the culture-based enumerations of all DBDMH-treated samples. Therefore, we concluded that DBDMH-treated meat did not contain significant VBNC populations of S. enterica. A detailed description of our spray system, the dye validation, and the treatment reproducibility are also provided in this work.
Controlling and monitoring the residual activity of quaternary ammonium compounds (QACs) are critical for maintaining safe yet effective levels of these agents in the environment. This study investigates the utility of bromophenol blue (BPB) as a safe, rapid and user‐friendly indicator to detect in situ residual QACs dried on hard, non‐porous surfaces, as well a means to assess their antimicrobial efficacy. At pH 7, BPB has a purple colour which turns blue upon its complexation with QACs such as didecyldimethylammonium chloride (DDAC). BPB itself has no antimicrobial properties up to 400 ppm. Within the range of 0–400 ppm, BPB colour change was tied to specific DDAC antimicrobial performances with a detection threshold of 100 ppm. BPB concentration and application volume could be adjusted such that a colour shift from purple to blue correlated with a set percent reduction (>99·9%) in test bacteria (Staphylococcus aureus and Klebsiella aerogenes). The BPB solutions developed in this study yielded similar colour shifts on polycarbonate and stainless steel surfaces and did not cross‐react with chemical ingredients commonly found in sanitizers and disinfectant products. Overall, this study suggests that BPB provides a simple solution to safely monitor the post‐application level and biocidal activity of residual dried QACs on surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.