Overall, the reviewed studies show strong evidences that β-AR activation, through several intracellular mechanisms, modulate tumor cell proliferation suggesting β-blockers can be a feasible therapeutic approach to antagonize β-adrenergic response or have a protective effect per se. This review highlight the need for intensifying the research not only on the molecular mechanisms underlying the β-adrenergic influence in cancer, but also on the implications of biased agonism of β-blockers as potential antitumor agents.
Colon cancer is the fourth and third most common cancer, respectively in men and women worldwide and its incidence is on the increase. Stress response has been associated with the incidence and development of cancer. The catecholamines (CA), adrenaline (AD) and noradrenaline (NA), are crucial mediators of stress response, exerting their effects through interaction with α- and β-adrenergic receptors (AR). Colon cancer cells express β-AR, and their activation has been implicated in carcinogenesis and tumor progression. Interest concerning the efficacy of β-AR blockers as possible additions to cancer treatment has increased. The aim of this study was to investigate the effect of several AR agonists and β-blockers following cell proliferation of HT-29 cells, a human colon adenocarcinoma cell line. For this purpose, HT-29 cells were incubated in the absence (control) or in the presence of the AR-agonists, AD, NA and isoprenaline (ISO) (0.1-100 µM) for 12 or 24 h. The tested AR agonists revealed proliferative effects on HT-29 cells. In order to study the effect of several β-blockers following proliferation induced by AR activation, the cells were treated with propranolol (PRO; 50 µM), carvedilol (CAR; 5 µM), atenolol (ATE; 50 µM), or ICI 118,551 (ICI; 5 µM) for 45 min prior, and simultaneously, to incubation with each of the AR agonists, AD and ISO, both at 1 and 10 µM. The results suggested that adrenergic activation plays an important role in colon cancer cell proliferation, most probably through β-AR. The β-blockers under study were able to reverse the proliferation induced by AD and ISO, and some of these blockers significantly decreased the proliferation of HT-29 cells. The elucidation of the intracellular pathways involved in CA-induced proliferation of colon cancer cells, and in the reversion of this effect by β-blockers, may contribute to identifying promising strategies in cancer treatment.
Objective: This article reviews the state of the art regarding the association between glucocorticoid actions and both obesity and insulin resistance, two main features of the metabolic syndrome. Methods: A methodological assessment of the literature on PubMed and SciE-LO databases was conducted by using the following terms: stress, metabolic syndrome, glucocorticoids, obesity, insulin resistance, hypothalamic-pituitary-adrenal-axis and 11β-hydroxysteroid dehydrogenase. Results: Chronic stress, mainly through hypothalamic-pituitary-adrenal axis dysregulation, promotes the accumulation of visceral fat. Reciprocally, obesity promotes a systemic low-grade inflammation state, mediated by increased adipokine secretion, which can chronically stimulate and disturb stress system. This vicious cycle, probably initiated by visceral adipose tissue dysfunction, might be the trigger for the development of metabolic syndrome. Conclusion: Given the strong evidences linking glucocorticoid release, obesity and type 2 diabetes, better understanding of the mechanisms underlying this connection might be useful for prevention and treatment of the metabolic syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.