BTBR T+ tf/J (BTBR) is an inbred mouse strain that displays social abnormalities and repetitive behaviors analogous to the first and third diagnostic symptoms of autism. Here we investigate ultrasonic vocalizations in BTBR, to address the second diagnostic symptom of autism, communication deficits. As compared to the commonly used C57BL/6J (B6) strain, BTBR pups called more loudly and more frequently when separated from their mothers and siblings. Detailed analysis of ten categories of calls revealed an unusual pattern in BTBR as compared to B6. BTBR emitted high levels of harmonics, two-syllable, and composite calls, but minimal numbers of chevron-shaped syllables, upward, downward, and short calls. Because body weights were higher in BTBR than B6 pups, one possible explanation was that larger thoracic size was responsible for the louder calls and different distribution of syllable categories. To test this possibility, we recorded separation calls from FVB/NJ, a strain with body weights similar to BTBR, and 129X1/SvJ, a strain with body weights similar to B6. BTBR remained the outlier on number of calls, displaying low numbers of complex, upward, chevron, short, and frequency steps calls, along with high harmonics and composites. Further, developmental milestones and growth rates were accelerated in BTBR, indicating an unusual neurodevelopmental trajectory. Overall, our findings demonstrate strain-specific patterns of ultrasonic calls that may represent different lexicons, or innate variations in complex vocal repertoires, in genetically distinct strains of mice. Particularly intriguing is the unusual pattern of vocalizations and the more frequent, loud harmonics evident in the BTBR mouse model of autism that may resemble the atypical vocalizations seen in some autistic infants.
In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behavior of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. All these vocalizations are becoming an increasingly valuable assay for behavioral phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models of neurodevelopmental disorders. Here we also show that the modulation of vocalizations by maternal cues (maternal potentiation paradigm) -originally identified and investigated in ratscan be measured in C57Bl/6 mouse pups with appropriate modifications of the rat protocol and can likely be applied to mouse behavioral phenotyping. In addition we suggest that a detailed qualitative evaluation of neonatal calls together with analysis of adult mouse vocalization patterns in both sexes in social settings, may lead to a greater understanding of the communication value of vocalizations in mice. Importantly, both neonatal and adult USV altered patterns can be determined during the behavioural phenotyping of mouse models of human neurodevelopmental and neuropsychiatric disorders, starting from those in which deficits in communication are a primary symptom.
BTBR T+tf/J (BTBR) is an inbred mouse strain that displays social deficits and repetitive behaviors analogous to the first and third diagnostic symptoms of autism. We previously reported an unusual pattern of ultrasonic vocalizations in BTBR pups that may represent a behavioral homolog to the second diagnostic symptom of autism, impaired communication. This study investigated the social and vocal repertoire in adult BTBR mice, to evaluate the role of ultrasonic vocalizations in multiple social situations at the adult stage of development. Three different social contexts were considered: male-female, male-male (resident-intruder) and female-female interactions. Behavioral responses and ultrasonic vocalizations were recorded for BTBR and for the highly social control strain C57BL/6J (B6). No episodes of overt fighting or mating were observed during the short durations of the three different experimental encounters. BTBR displayed lower levels of vocalizations and social investigation in all three social contexts as compared with B6. In addition, the correlation analyses between social investigation and ultrasonic vocalization emission rate showed that in B6 mice, the two variables were positively correlated in all the three different social settings, whereas in BTBR mice, the positive correlation was significant only in the male-female interactions. These findings strongly support the value of simultaneously recording two aspects of the mouse social repertoire: social motivation and bioacoustic communication. Moreover, our findings in adults are consistent with previous results in pups, showing an unusual vocal repertoire in BTBR as compared with B6.
Developmental exposure to the organophosphorous insecticide chlorpyrifos (CPF) induces long-term effects on brain and behavior in laboratory rodents. We evaluated in adult mice the behavioral effects of either fetal and/or neonatal CPF exposure at doses not inhibiting fetal and neonatal brain cholinesterase. CPF (3 or 6 mg/kg) was given by oral treatment to pregnant females on gestational days 15-18 and offspring were treated sc (1 or 3 mg/kg) on postnatal days (PNDs) 11-14. Serum and brain acetylcholinesterase (AChE) activity was evaluated at birth and 24 h from termination of postnatal treatments. On PND 70, male mice were assessed for spontaneous motor activity in an open-field test and in a socioagonistic encounter with an unfamiliar conspecific. Virgin females underwent a maternal induction test following presentation of foster pups. Both sexes were subjected to a plus-maze test to evaluate exploration and anxiety levels. Gestational and postnatal CPF exposure (higher doses) affected motor activity in the open field and enhanced synergically agonistic behavior. Postnatal CPF exposure increased maternal responsiveness toward pups in females. Mice of both sexes exposed to postnatal CPF showed reduced anxiety response in the plus-maze, an effect greater in females. Altogether, developmental exposure to CPF at doses that do not cause brain AChE inhibition induces long-term alterations in sex-specific behavior patterns of the mouse species. Late neonatal exposure on PNDs 11-14 was the most effective in causing behavioral changes. These findings support the hypothesis that developmental CPF may represent a risk factor for increased vulnerability to neurodevelopmental disorders in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.