Simultaneously determining multiple enzyme activities by MS/MS, with a focus on specific biochemical markers, successfully detected newborns with LSDs. The high incidence of these disorders supports this screening program.
These authors contributed equally to this work.Alloantibody-mediated graft injury is a major cause of kidney dysfunction and loss. The complementbinding ability of de novo donor-specific antibodies (dnDSAs) has been suggested as a prognostic tool to stratify patients for clinical risk. In this study, we analyzed posttransplant kinetics of complementfixing dnDSAs and their role in antibody-mediated rejection development and graft loss. A total of 114 pediatric nonsensitized recipients of first kidney allograft were periodically monitored for dnDSAs using flow bead assays, followed by C3d and C1q assay in case of positivity. Overall, 39 patients developed dnDSAs, which were C1q + and C3d + in 25 and nine patients, respectively. At follow-up, progressive acquisition over time of dnDSA C1q and C3d binding ability, within the same antigenic specificity, was observed, paralleled by an increase in mean fluorescence intensity that correlated with clinical outcome. C3d-fixing dnDSAs were better fit to stratify graft loss risk when the different dnDSA categories were evaluated in combined models because the 10-year graft survival probability was lower in patients with C3d-binding dnDSA than in those without dnDSAs or with C1q + /C3d À or non-complement-binding dnDSAs (40% vs. 94%, 100%, and 100%, respectively). Based on the kinetics profile, we favor dnDSA removal or modulation at first confirmed positivity, with treatment intensification guided by dnDSA biological characteristics.
Background
Lysosphingolipids, the N-deacylated forms of sphingolipids, have been identified as potential biomarkers of several sphingolipidoses, such as Gaucher, Fabry, Krabbe and Niemann-Pick diseases and in GM1 and GM2 gangliosidoses. To date, different methods have been developed to measure various lysosphingolipids (LysoSLs) in plasma. Here, we present a novel liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for a simultaneous quantification of LysoSLs (HexSph, LysoGb3, LysoGM1, LysoGM2, LysoSM and LysoSM509) in dried blood spot (DBS). This LC-MS/MS method was used to compare the levels of LysoSLs in DBS and plasma in both affected patients and healthy controls.
Methods
Lysosphingolipids were extracted from a 3.2 mm diameter DBS with a mixture of methanol:acetonitrile:water (80:15:5, v/v) containing internal stable isotope standards. Chromatographic separation was performed using a C18 column with a gradient of water and acetonitrile both with 0.1% formic acid in a total run time of 4 min. The compounds were detected in the positive ion mode electrospray ionization (ESI)-MS/MS by multiple reaction monitoring (MRM).
Results
The method was validated on DBS to demonstrate specificity, linearity, lowest limit of quantification, accuracy and precision. The reference ranges were determined in pediatric and adult populations. The elevated levels of LysoSLs were identified in Gaucher disease (HexSph), Fabry disease (LysoGb3), prosaposin deficiency (HexSph and LysoGb3) and Niemann-Pick disease types A/B and C (LysoSM and LysoSM509). The correlation in the levels between DBS and plasma was excellent for LysoGb3 and HexSph but poor for LysoSM and LysoSM509.
Conclusions
Despite the fact that plasma LysoSLs determination remains the gold standard, our LC-MS/MS method allows a rapid and reliable quantification of lysosphingolipids in DBS. The method is a useful tool for the diagnosis of different sphingolipidoses except for Niemann-Pick type C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.