Pigs have become increasingly popular in large-animal translational neuroscience research as an economically and ethically feasible substitute to non-human primates. The large brain size of the pig allows the use of conventional clinical brain imagers and the direct use and testing of neurosurgical procedures and equipment from the human clinic. Further macroscopic and histological analysis, however, requires postmortem exposure of the pig central nervous system (CNS) and subsequent brain removal. This is not an easy task, as the pig CNS is encapsulated by a thick, bony skull and spinal column. The goal of this paper and instructional video is to describe how to expose and remove the postmortem pig brain and the pituitary gland in an intact state, suitable for subsequent macroscopic and histological analysis.
BackgroundAdult onset growth hormone (GH) deficiency (AGDH) is a potentially underdiagnosed condition, caused by damage to the pituitary gland. AGHD is treated with growth hormone replacement therapy. A large variety of clinical symptoms and changes in the metabolic homeostasis can be observed and quantified. New large animal models are needed for future drug development.New methodIn this study, we evaluate methods for a new large non-primate animal model of GH deficiency in post pubertal Göttingen Minipigs (minipig). Lesions in the pituitary gland were made by stereotaxic monopolar thermo-coagulation guided by magnetic resonance imaging (MRI), and pituitary function was evaluated using insulin tolerance test (ITT) with measurements of growth hormone secretion induced by hypoglycemia.ResultsLesions were successfully applied to the pituitary gland without any damage to surrounding tissue including the hypothalamus, which was confirmed by post-operative MRI and post mortem histology. Plasma levels of GH during ITT showed no decrease in secreted levels one week after surgery compared to levels obtained before surgery.Comparison with existing methodsCompared to other GH insufficiency models, eloquent brain tissue is spared. Furthermore, alternatively to rodent models, a large animal model would allow the use of human intended equipment to evaluate disease. Using the minipig avoids social, economical and ethical issues, compared with primates.ConclusionThe lesions did not remove all GH production, but proof of concept is demonstrated. In addition, the ITT is presented as a safe and efficient method to diagnose GH deficiency in minipigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.