The distribution of ZO-1, ZO-2, and occludin follows the increase in junction complexity encountered in renal tubules. The amount of the three proteins found in proximal and distal segments is significantly higher in the latter.
To characterize Ca(2+) transport in newborn rat cortical collecting duct (CCD) cells, we used nifedipine, which in adult rat distal tubules inhibits the intracellular Ca(2+) concentration ([Ca(2+)](i)) increase in response to hormonal activation. We found that the dihydropyridine (DHP) nifedipine (20 microM) produced an increase in [Ca(2+)](i) from 87.6 +/- 3.3 nM to 389.9 +/- 29.0 nM in 65% of the cells. Similar effects of other DHP (BAY K 8644, isradipine) were also observed. Conversely, DHPs did not induce any increase in [Ca(2+)](i) in cells obtained from proximal convoluted tubule. In CCD cells, neither verapamil nor diltiazem induced any rise in [Ca(2+)](i). Experiments in the presence of EGTA showed that external Ca(2+) was required for the nifedipine effect, while lanthanum (20 microM), gadolinium (100 microM), and diltiazem (20 microM) inhibited the effect. Experiments done in the presence of valinomycin resulted in the same nifedipine effect, showing that K(+) channels were not involved in the nifedipine-induced [Ca(2+)](i) rise. H(2)O(2) also triggered [Ca(2+)](i) rise. However, nifedipine-induced [Ca(2+)](i) increase was not affected by protamine. In conclusion, the present results indicate that 1) primary cultures of cells from terminal nephron of newborn rats are a useful tool for investigating Ca(2+) transport mechanisms during growth, and 2) newborn rat CCD cells in primary culture exhibit a new apical nifedipine-activated Ca(2+) channel of capacitive type (either transient receptor potential or leak channel).
Aims: To compare the effects of Ayurvedic and conventional nutritional therapy in patients with irritable bowel syndrome (IBS).Methods: Sixty-nine patients with IBS were randomized to Ayurvedic (n = 35) or conventional nutritional therapy according to the recommendations of the German Nutrition Society including the low-FODMAP diet (n = 34). Study visits took place at baseline and after 1, 3, and 6 months. The primary outcome was IBS symptom severity (IBS-SSS) after 3 months; secondary outcomes included stress (CPSS), anxiety and depression (HADS), well-being (WHO-5) and IBS-specific quality of life (IBS-QOL). A repeated measures general linear model (GLM) for intent-to-treat-analyses was applied in this explorative study.Results: After 3 months, estimated marginal means for IBS-SSS reductions were 123.8 [95% confidence interval (95% CI) = 92.8–154.9; p < 0.001] in the Ayurvedic and 72.7 (95% CI = 38.8–106.7; p < 0.001) in the conventional group. The IBS-SSS reduction was significantly higher in the Ayurveda group compared to the conventional therapy group (estimated marginal mean = 51.1; 95% CI = 3.8–98.5; p = 0.035) and clinically meaningful. Sixty-eight percentage of the variance in IBS-SSS reduction after 3 months can be explained by treatment, 6.5% by patients' expectations for their therapies and 23.4% by IBS-SSS at pre-intervention. Both therapies are equivalent in their contribution to the outcome variance. The higher the IBS-SSS score at pre-intervention and the larger the patients' expectations, the greater the IBS-SSS reduction. There were no significant group differences in any secondary outcome measures. No serious adverse events occurred in either group.Conclusion: Patients with IBS seem to benefit significantly from Ayurvedic or conventional nutritional therapy. The results warrant further studies with longer-term follow-ups and larger sample sizes.Clinical Trial Registration:https://clinicaltrials.gov/ct2/show/NCT03019861, identifier: NCT03019861.
In mammals, neonatal positive calcium balance is required for adequate growth. Parathyroid hormone (PTH) plays a central role in this process mainly through its action on the distal nephron. We studied the effect of PTH on cytosolic calcium in distal segments from neonatal rat kidney. PTH elicited a concentration-dependent increase in cytosolic calcium in neonatal distal nephron (EC(50)=0.5 nM) but not in proximal tubules. At similar PTH concentrations the response was higher in the neonatal than in the adult tubules. The response was associated with protein kinase C (PKC), since phorbol myristate acetate (100 nM) increased [Ca(2+)]i, and staurosporin, an inhibitor of PKC, decreased (10 nM) or suppressed (100 nM) the PTH effect. cAMP analogues did not change [Ca(2+)]i. The response was diminished in low external calcium (0.1 mM) and absent at zero calcium, indicating dependency on external calcium. Resting calcium decreased from 80+/-10.8 to 28.6+/-2.6 nM at zero [Ca(2+)]e. PTH and nifedipine increased cytosolic calcium in an additive fashion. We show for the first time that PTH increased cytosolic calcium in the distal nephron of neonatal kidney, in a concentration-dependent pattern and in association with PKC activation. Higher sensitivity of the neonatal tubule might facilitate absorption of this cation during the neonatal period, when growth requires a positive balance of calcium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.