Several methods currently exist to efficiently correct topographic effects on the radiance measured by satellites. Most of those methods use topographic information and satellite data at the same spatial resolution. In this study, the 30 m spatial resolution data of the Digital Elevation Model (DEM) from ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) are used to account for those topographic effects when retrieving land surface reflectance from satellite data at lower spatial resolution (e.g., 1 km). The methodology integrates the effects of sub-pixel topography on the estimation of the total irradiance received at the surface considering direct, diffuse and terrain irradiance. The corrected total irradiance is then used to compute the topographically corrected surface reflectance. The proposed method has been developed to be applied on various kilometric pixel size satellite data. In this study, it was tested and validated with synthetic Landsat data aggregated at 1 km. The results obtained after a sub-pixel topographic correction are compared with the ones obtained after a pixel level OPEN ACCESSRemote Sens. 2014, 6 10357 topographic correction and show that in rough terrain, the sub-pixel topography correction method provides better results even if it tends to slightly overestimate the retrieved land surface reflectance in some cases.
Considering large and complex areas like the Tibetan Plateau, an analysis of the spatial distribution of the solar radiative budget over time not only requires the use of satellite remote sensing data, but also of an algorithm that accounts for strong variations of topography. Therefore, this research aims at developing a method to produce time series of solar radiative fluxes at high temporal and spatial resolution based on observed surface and atmosphere properties and topography. The objective is to account for the heterogeneity of the land surface using multiple land surface and atmospheric MODIS data products combined with a digital elevation model to produce estimations daily at the kilometric level. The developed approach led to the production of a three-year time series (2008)(2009)(2010) of daily solar radiation budget at one kilometer spatial resolution across the Tibetan Plateau. The validation showed that the main improvement from the proposed method is a higher spatial and temporal resolution as compared to existing products. However, even if the solar radiation estimates are satisfying on clear sky conditions, the algorithm is less reliable under cloudy sky condition and the albedo product used here has a too coarse temporal resolution and is not accurate enough over rugged terrain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.