Experimental observations and theoretical studies show that nonlinear internal waves occur widely in shallow water and cause acoustic propagation effects including ducting and mode coupling. Horizontal ducting results when acoustic modes travel between internal wave fronts that form waveguide boundaries. For small grazing angles between a mode trajectory and a front, an interference pattern may arise that is a horizontal Lloyd mirror pattern. An analytic description for this feature is provided along with comparisons between results from the formulated model predicting a horizontal Lloyd mirror pattern and an adiabatic mode parabolic equation. Different waveguide models are considered, including boxcar and jump sound speed profiles where change in sound speed is assumed 12 m/s. Modifications to the model are made to include multiple and moving fronts. The focus of this analysis is on different front locations relative to the source as well as on the number of fronts and their curvatures and speeds. Curvature influences mode incidence angles and thereby changes the interference patterns. For sources oriented so that the front appears concave, the areas with interference patterns shrink as curvature increases, while convexly oriented fronts cause patterns to expand.
For imaging problems in which numerical solutions need to be computed for both the inverse and the underlying forward problems, discretization can be a major factor that determines the accuracy of imaging. In this work, we analyze the effect of discretization on the accuracy of fluorescence diffuse optical tomography. We model the forward problem by a pair of diffusion equations at the excitation and emission wavelengths and consider a finite element discretization method for the numerical solution of the forward problem. For the inverse problem, we use an optimization framework which allows incorporation of a priori information in the form of zeroth- and first-order Tikhonov regularization terms. Next, we convert the inverse problem into a variational problem and use Galerkin projection to discretize the inverse problem. Following the discretization, we analyze the error in reconstructed images due to the discretization of the forward and inverse problems and present two theorems which point out the factors that may lead to high error such as the mutual dependence of the forward and inverse problems, the number of sources and detectors, their configuration and their positions with respect to fluorophore concentration, and the formulation of the inverse problem. Finally, we demonstrate the results and implications of our error analysis by numerical experiments. In the second part of the paper, we apply our results to design novel adaptive discretization algorithms.
Existing literature demonstrates that costal and shelf break regions frequently contain significant nonlinear internal wave (NIW) activity and fronts. Our previous work, which incorporated stochastic modeling techniques in conjunction with azimuthally varying NIWs in an adiabatic setting, showed significant variations in intensity. However, NIWs can strongly affect energy coupling between acoustic modes. We seek to understand the evolution of coupled mode propagation through a field of randomly varying NIWs. We will examine the effects of coupling due to propagation through the intersection of two or more NIWs crossing at oblique angles. We use a fully 3D parabolic equation method and other tools to examine the ensemble of effects. [Work supported by ONR.]
Abstract-For imaging problems in which numerical solutions need to be computed for both the inverse and the underlying forward problems, discretization can be a major factor that determines the accuracy of imaging. In this work, we analyze the effect of discretization on the accuracy of fluorescence diffuse optical tomography. We model the forward problem by a pair of diffusion equations at the excitation and emission wavelengths and consider a finite element discretization method for the numerical solution of the forward problem. For the inverse problem, we use an optimization framework which allows incorporation of a priori information in the form of zeroth-and first-order Tikhonov regularization terms. Next, we convert the inverse problem into a variational problem and use Galerkin projection to discretize the inverse problem. Following the discretization, we analyze the error in reconstructed images due to the discretization of the forward and inverse problems and present two theorems which point out the factors that may lead to high error such as the mutual dependence of the forward and inverse problems, the number of sources and detectors, their configuration and their positions with respect to fluorophore concentration, and the formulation of the inverse problem. Finally, we demonstrate the results and implications of our error analysis by numerical experiments. In the second part of the paper, we apply our results to design novel adaptive discretization algorithms.Index Terms-Adaptive meshing algorithms, error analysis, fluorescence diffuse optical tomography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.