Microsporum canis is the primary agent causing dermatophytosis in cats, and also infects humans, dogs, and other species. Assessment of genetic variation among M. canis isolates in the United States has not been conducted. Further, M. canis mating type and assessment of disease severity associated with genotypic characteristics have not been rigorously evaluated. We therefore isolated M. canis from 191 domestic cats across the US and characterized genotypes by evaluation of ITS sequence, MAT locus, and microsatellite loci analysis. The genes SSU1 and SUB3, which are associated with keratin adhesion and digestion, were sequenced from a subset of isolates to evaluate potential genetic associations with virulence. Analysis of microsatellite makers revealed three M. canis genetic clusters. Both clinic location and disease severity were significant predictors of microsatellite variants. 100% of the M. canis isolates were MAT1-1 mating gene type, indicating that MAT1-2 is very rare or extinct in the US and that asexual reproduction is the dominant form of replication. No genetic variation at SSU1 and SUB3 was observed. These findings pave the way for novel testing modalities for M. canis and provide insights about transmission and ecology of this ubiquitous and relatively uncharacterized agent.
Dermatophytes are highly infectious fungi that cause superficial infections in keratinized tissues in humans and animals. This group of fungi is defined by their ability to digest keratin and encompasses a wide range of species. We investigated a critical adhesion protein, subtilisin 3, utilized by Microsporum canis during initial stages of infection, analyzing its production and expression under varying growth conditions. Additionally, as this protein must be expressed and produced for dermatophyte infections to occur, we developed and optimized a diagnostic antibody assay targeting this protein. Subtilisin 3 levels were increased in culture when grown in baffled flasks and supplemented with either l‐cysteine or cat hair. As subtilisin 3 was also produced in cultures not supplemented with keratin or cysteine, this study demonstrated that subtilisin 3 production is not reliant on the presence of keratin or its derivatives. These findings could help direct future metabolic studies of dermatophytes, particularly during the adherence phase of infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.