Phenazepam is a benzodiazepine derivative that has been in clinical use in Russia since 1978 and is not available by prescription in the United States; however, it is attainable through various internet websites, sold either as tablets or as a reference grade crystalline powder. Presented here is the case of a 42-year old Caucasian male who died as the result of combined phenazepam, morphine, codeine, and thebaine intoxication. A vial of white powder labeled "Phenazepam, Purity 99%, CAS No. 51753-57-2, Research Sample", a short straw, and several poppy seed pods were found on the scene. Investigation revealed that the decedent had a history of ordering medications over the internet and that he had consumed poppy seed tea prior to his death. Phenazepam, morphine, codeine, and thebaine were present in the blood at 386, 116, 85, and 72 ng/mL, respectively.
Methadone is difficult to administer as a therapeutic agent because of a wide range of interindividual pharmacokinetics, likely due to genetic variability of the CYP450 enzymes responsible for metabolism to its principal metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP). CYP3A4 is one of the primary CYP450 isoforms responsible for the metabolism of methadone to EDDP in humans. The purpose of this study was to evaluate the role of CYP3A4 genetic polymorphisms in accidental methadone fatalities. A study cohort consisting of 136 methadone-only and 92 combined methadone/benzodiazepine fatalities was selected from cases investigated at the West Virginia and Kentucky Offices of the Chief Medical Examiner. Seven single nucleotide polymorphisms (SNPs) were genotyped within the CYP3A4 gene. Observed allelic and genotypic frequencies were compared with expected frequencies obtained from The National Center for Biotechnology Information dbSNP database. SNPs rs2242480 and rs2740574 demonstrated an apparent enrichment within the methadone-only overdose fatalities compared with the control group and the general population. This enrichment was not apparent in the methadone/benzodiazepine cases for these two SNPs. Our findings indicate that there may be two or more SNPs on the CYP3A4 gene that cause or contribute to the methadone poor metabolizer phenotype.
Cytochrome P450 (CYP) enzyme 2B6 plays a significant role in the stereo-selective metabolism of (S)-methadone to 2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolidine, an inactive methadone metabolite. Elevated (S)-methadone can cause cardiotoxicity by prolonging the QT interval of the heart's electrical cycle. Large inter-individual variability of methadone pharmacokinetics causes discordance in the relationship between dose, plasma concentrations and side effects. The purpose of this study was to determine if one or more single nucleotide polymorphisms (SNPs) located within the CYP2B6 gene contributes to a poor metabolizer phenotype for methadone in these fatal cases. The genetic analysis was conducted on 125 Caucasian methadone-only fatalities obtained from the West Virginia and Kentucky Offices of the Chief Medical Examiner. The frequency of eight exonic and intronic SNPs (rs2279344, rs3211371, rs3745274, rs4803419, rs8192709, rs8192719, rs12721655 and rs35979566) was determined. The frequencies of SNPs rs3745274 (*9, c516G > T, Q172H), and rs8192719 (21563 C > T) were enhanced in the methadone-only group. Higher blood methadone concentrations were observed in individuals who were genotyped homozygous for SNP rs3211371 (*5, c1459C > T, R487C). These results indicate that these three CYP2B6 SNPs are associated with methadone fatalities.
Benzodiazepines are a commonly prescribed class of drugs that have the potential for abuse. The Palm Beach County Sheriff’s Office received drug seizure submissions that included novel and/or non-routine benzodiazepines of increasing prevalence from 2017 to 2019. This prompted the development of a method of analysis for these compounds in biological specimens. The method tests for 16 novel and non-routine benzodiazepines and suvorexant in whole blood by liquid chromatography–tandem mass spectrometry (LC–MS-MS). The target analytes included bromazepam, clobazam, clonazolam, clotiazepam, diclazepam, estazolam, etizolam, flualprazolam, flubromazepam, flubromazolam, loprazolam, lormetazepam, phenazepam, prazepam, suvorexant, tetrazepam, and triazolam. The method uses 200 µL of sample, protein precipitation, and an instrument run-time of 8 min. The limit of detection was either 1 or 5 ng/mL and the limit of quantitation was either 5 or 25 ng/mL depending on the analyte. The method was validated for quantitative analysis for 15 out of the 17 analytes. Flubromazepam and prazepam were validated for qualitative identification only. A quadratic calibration model (r2 > 0.990) with 1/x weighting was used for all analytes for quantitative analysis. The calibration range was either 5-100 or 25–500 ng/mL depending on the analyte. The coefficient of variation of replicate analyses was within 14% and bias was within ± 14%. The method provides a sensitive, efficient, and robust procedure for the quantitation and/or qualitative identification of select novel and non-routine benzodiazepines and suvorexant using LC–MS-MS and a sample volume of 200 µL.
Cannabis consumer products are a $4.6 billion industry in the U.S. that is projected to exceed $14 billion by 2025. Despite an absence of U.S. Food and Drug Administration (FDA) regulation or clinical data, thousands of nutraceuticals, topical consumer products, and beauty products claim benefits of hemp or cannabidiol. However, a lack of required quality control measures prevents consumers from knowing the true concentration or purities of cannabis-labeled products. Thirteen over-the-counter consumer products were examined for the presence of cannabidiol (CBD), cannabinol (CBN), Δ9-tetrahydrocannabinol (THC), cannabidiolic acid (CBDA), and Δ9-tetrahydrocannabinolic acid A (THCA). Additionally, the efficacy of topical applications was investigated using a porcine skin model, in which particle size and zeta potential relate to skin permeability. Skin permeation was correlated to particle size and relative stability in skin-like conditions but not directly related to the CBD content, suggesting that topical products can be designed to enhance overall skin permeation. Of the products analyzed, all products have some traceable amount of cannabinoids, while seven products had multiple cannabinoids with quantifiable amounts. Overall, the need for further regulation is clear, as most products have apparent distinctions between their true and labeled contents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.