Although biochemical signals that modulate stem cell self-renewal and differentiation were extensively studied, only recently were the mechanical properties of a stem cell's microenvironment shown to regulate its behavior. It would be desirable to have independent control over biochemical and mechanical cues, to analyze their relative and combined effects on stem-cell function. We developed a synthetic, interfacial hydrogel culture system, termed variable moduli interpenetrating polymer networks (vmIPNs), to assess the effects of soluble signals, adhesion ligand presentation, and material moduli from 10-10,000 Pa on adult neural stem-cell (aNSC) behavior. The aNSCs proliferated when cultured in serum-free growth media on peptide-modified vmIPNs with moduli of >/=100 Pa. In serum-free neuronal differentiation media, a peak level of the neuronal marker, beta-tubulin III, was observed on vmIPNs of 500 Pa, near the physiological stiffness of brain tissue. Furthermore, under mixed differentiation conditions with serum, softer gels ( approximately 100-500 Pa) greatly favored neurons, whereas harder gels ( approximately 1,000-10,000 Pa) promoted glial cultures. In contrast, cell spreading, self-renewal, and differentiation were inhibited on substrata with moduli of approximately 10 Pa. This work demonstrates that the mechanical and biochemical properties of an aNSC microenvironment can be tuned to regulate the self-renewal and differentiation of aNSCs.
SummaryA major challenge for clinical application of pluripotent stem cell therapy for Parkinson's disease (PD) is large-scale manufacturing and cryopreservation of neurons that can be efficiently prepared with minimal manipulation. To address this obstacle, midbrain dopamine neurons were derived from human induced pluripotent stem cells (iPSC-mDA) and cryopreserved in large production lots for biochemical and transplantation studies. Cryopreserved, post-mitotic iPSC-mDA neurons retained high viability with gene, protein, and electrophysiological signatures consistent with midbrain floor-plate lineage. To test therapeutic efficacy, cryopreserved iPSC-mDA neurons were transplanted without subculturing into the 6-OHDA-lesioned rat and MPTP-lesioned non-human-primate models of PD. Grafted neurons retained midbrain lineage with extensive fiber innervation in both rodents and monkeys. Behavioral assessment in 6-OHDA-lesioned rats demonstrated significant reversal in functional deficits up to 6 months post transplantation with reinnervation of the host striatum and no aberrant growth, supporting the translational development of pluripotent cell-based therapies in PD.
Peptide-functionalized materials show promise in controlling stem cell behavior by mimicking cellmatrix interactions. Supported lipid bilayers are an excellent platform for displaying peptides due to their ease of fabrication and low non-specific interactions with cells. In this paper, we report on the behavior of adult hippocampal neural stem cells (NSCs) on phospholipid bilayers functionalized with different RGD-containing peptides: either GGGNGEPRGDTYRAY ('bsp-RGD(15)') or GRGDSP. Fluid supported bilayers were prepared on glass surfaces by adsorption and fusion of small lipid vesicles incorporating synthetic peptide amphiphiles. NSCs adhered to bilayers with either GRGDSP or bsp-RGD(15) peptide. After 5 days in culture, NSCs formed neurosphere-like aggregates on GRGDSP bilayers, whereas on bsp-RGD(15) bilayers a large fraction of single adhered cells were observed, comparable to monolayer growth seen on laminin controls. NSCs retained their ability to differentiate into neurons and astrocytes on both peptide surfaces. This work illustrates the utility of supported bilayers in displaying peptide ligands and demonstrates that RGD peptides may be useful in synthetic culture systems for stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.