Methane emission from trees may partially or completely offset the methane sink in upland soils, the only process that has been regularly included in methane budgets for forest ecosystems. Our objective was to analyze multiple biogeochemical processes that influence the production, oxidation and transport of methane in a riparian cottonwood ecosystem and its adjacent river. We combined chamber flux measurements on tree stems, forest soil and the river surface with eddy covariance measurements of methane net ecosystem exchange. In addition, we tested whether methanogens were present in cottonwood stems, shallow soil layers and alluvial groundwater. Average midday peak in net methane emission measured by eddy covariance was c. 12 nmol m −2 s −1. The average uptake of methane by soils (0.87 nmol m −2 s −1) was largely offset by tree stem methane emission (0.75 nmol m −2 s −1). There was evidence of methanogens in tree stems but not in shallow soil. Growing season (May-September) cumulative net methane emission (17.4 mmol CH 4 m −2) included methane produced in cottonwood stems and methane input to the nocturnal boundary layer from the forest and the adjacent river. The multiple processes contributing to methane emission illustrated the linked nature of these adjacent terrestrial and aquatic ecosystems.
After 47 yr of no-till and reduced summerfallow at Lethbridge, Alberta, soil organic carbon concentration and stocks increased 2.14 g kg−1 and 2.22 Mg ha−1, respectively, in the surface 7.5 cm layer. These findings confirmed the conservation value of reducing tillage and summerfallow. The annual changes were relatively small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.