In animal societies, behavioral idiosyncrasies of the individuals often guide which tasks they should perform. Such personality-specific task participation can increase individual task efficiency, thereby improving group performance. While several recent studies have documented group-level benefits of within-group behavioral (i.e., personality) diversity, how these benefits are realized at the individual level is unclear. Here we probe the individual-level benefits of personality-driven task participation in the social spider Stegodyphus dumicola. In S. dumicola, the presence of at least one highly bold individual catalyzes foraging behavior in shy colony members, and all group constituents heavily compete for prey. We assessed boldness by examining how quickly spiders resumed normal movement after a simulated predator attack. We test here whether (1) participants in collective foraging gain more mass from prey items and (2) whether bold individuals are less resistant to starvation than shy spiders, which would motivate the bold individuals to forage more. Next, we assembled colonies of shy spiders with and without a bold individual, added one prey item, and then tracked the mass gain of each individual spider after this single feeding event. We found that spiders that participated in prey capture (whether bold or shy) gained more mass than nonparticipators, and colonies containing a single bold spider gained more total mass than purely shy colonies. We also found that bold spiders participated in more collective foraging events and were more susceptible to starvation than shy spiders, suggesting that the aggressive foraging of bold individuals may represent a strategy to offset starvation risk. These findings add to the body of evidence that animal personality can shape social organization, individual performance, and group success.
Predation is a ubiquitous threat that often plays a central role in determining community dynamics. Predators can impact prey species by directly consuming them, or indirectly causing prey to modify their behavior. Direct consumption has classically been the focus of research on predator-prey interactions, but substantial evidence now demonstrates that the indirect effects of predators on prey populations are at least as strong as, if not stronger than, direct consumption. Social animals, particularly those that live in confined colonies, rely on coordinated actions that may be vulnerable to the presence of a predator, thus impacting the society’s productivity and survival. To examine the effect of predators on the behavior of social animal societies, we observed the collective foraging of social spider colonies (Stegodyphus dumicola) when they interact with dangerous predatory ants either directly, indirectly, or both. We found that when colonies were exposed directly and indirectly to ant cues, they attacked prey with approximately 40–50% fewer spiders, and 40–90% slower than colonies that were not exposed to any predator cues. Furthermore, exposure to predatory ants disassociated the well-documented positive relationship between colony behavioral composition (proportion of bold spiders) and foraging aggressiveness (number of attackers) in S. dumicola, which is vital for colony growth. Thus, the indirect effects of predator presence may limit colony success. These results suggest that enemy presence could compromise the organizational attributes of animal societies.
Social spiders are thought to predominantly receive information about their environment through vibrational cues. Thus, group living introduces the challenge of distinguishing useful vibrational information from the background noise of nestmates. Here we investigate whether spatial proximity between colony-mates may allow social spiders (Stegodyphus dumicola) to reduce background noise that might obstruct vibrational information from prey. To do so, we constructed experimental colonies and measured whether the number of spiders in proximity to one another whilst resting could predict the number of spiders that participated in prey capture. Additionally, we exposed spider colonies to five different simulated vibrational cues mimicking prey to determine which cue types spiders were most responsive to. We found that the number of spiders huddled together prior to foraging trials was positively correlated with the number of spiders participating in collective foraging. Furthermore, colonies responded more quickly to pulsed vibrational cues over other types of vibrational patterns. Together these data reveal that both social interactions and prey cues shape how social sit-and-wait predators experience and respond to their environment.
A major benefit of living in a group is the ability to learn from others. We investigated how spider societies learn and respond to important information when that information is held by the majority or by single influential or generic individuals. We found that groups adopted a “better safe than sorry” strategy and exhibited caution when the group or any individual, regardless of their presumed social influence, had been previously exposed to danger.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.