In this paper, the reliability of a k-component system, in which all components are subject to common stress, is considered. The multicomponent system will continue to survive if at least s out of k components’ strength exceed the common stress. The system reliability is investigated by utilizing the maximum likelihood estimator based on progressively type II censored samples from generalized Pareto distributions. The confidence interval of the system reliability can be obtained by using asymptotic normality with Fisher information matrix or bootstrap method approximation. An intensive simulation study is conducted to evaluate the performance of maximum likelihood estimators of the model parameters and system reliability for a variety of cases. For the confidence interval of the system reliability, simulation results indicate the bootstrap method approximation outperforms over the asymptotic normality approximation in terms of coverage probability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.