We propose a new covariance matrix called Gini covariance matrix (GCM), which is a natural generalization of univariate Gini mean difference (GMD) to the multivariate case. The extension is based on the covariance representation of GMD by applying the multivariate spatial rank function. We study properties of GCM, especially in the elliptical distribution family. In order to gain the affine equivariance property for GCM, we utilize the transformation-retransformation (TR) technique and obtain an affine equivariant version GCM that turns out to be a symmetrized M-functional. The influence function of those two GCM's are obtained and their estimation has been presented. Asymptotic results of estimators have been established. A closely related scatter Kotz functional and its estimator are also explored. Finally, asymptotical efficiency and finite sample efficiency of the TR version GCM are compared with those of sample covariance matrix, Tyler-M estimator and other scatter estimators under different distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.