The purpose of this study was to determine the validity of the Garmin fēnix® 3 HR fitness tracker. Methods: A total of 34 healthy recreational runners participated in biomechanical or metabolic testing. Biomechanics participants completed three running conditions (flat, incline, and decline) at a self-selected running pace, on an instrumented treadmill while running biomechanics were tracked using a motion capture system. Variables extracted were compared with data collected by the Garmin fēnix 3 HR (worn on the wrist) that was paired with a chest heart rate monitor and a Garmin Foot Pod (worn on the shoe). Metabolic testing involved two separate tests; a graded exercise test to exhaustion utilizing a metabolic cart and treadmill, and a 15-min submaximal outdoor track session while wearing the Garmin. 2 × 3 analysis of variances with post hoc t tests, mean absolute percentage errors, Pearson’s correlation (R), and a t test were used to determine validity. Results: The fēnix kinematics had a mean absolute percentage errors of 9.44%, 0.21%, 26.38%, and 5.77% for stride length, run cadence, vertical oscillation, and ground contact time, respectively. The fēnix overestimated (p < .05) VO2max with a mean absolute percentage error of 8.05% and an R value of .917. Conclusion: The Garmin fēnix 3 HR appears to produce a valid measure of run cadence and ground contact time during running, while it overestimated vertical oscillation in every condition (p < .05) and should be used with caution when determining stride length. The fēnix appears to produce a valid VO2max estimate and may be used when more accurate methods are not available.
Background
Previous research shows kinematic and kinetic coupling between the metatarsophalangeal (MTP) and midtarsal joints during gait. Studying the effects of MTP position as well as foot structure on this coupling may help determine to what extent foot coupling during dynamic and active movement is due to the windlass mechanism. This study’s purpose was to investigate the kinematic and kinetic foot coupling during controlled passive, active, and dynamic movements.
Methods
After arch height and flexibility were measured, participants performed four conditions: Seated Passive MTP Extension, Seated Active MTP Extension, Standing Passive MTP Extension, and Standing Active MTP Extension. Next, participants performed three heel raise conditions that manipulated the starting position of the MTP joint: Neutral, Toe Extension, and Toe Flexion. A multisegment foot model was created in Visual 3D and used to calculate ankle, midtarsal, and MTP joint kinematics and kinetics.
Results
Kinematic coupling (ratio of midtarsal to MTP angular displacement) was approximately six times greater in Neutral heel raises compared to Seated Passive MTP Extension, suggesting that the windlass only plays a small kinematic role in dynamic tasks. As the starting position of the MTP joint became increasingly extended during heel raises, the amount of negative work at the MTP joint and positive work at the midtarsal joint increased proportionally, while distal-to-hindfoot work remained unchanged. Correlations suggest that there is not a strong relationship between static arch height/flexibility and kinematic foot coupling.
Conclusions
Our results show that there is kinematic and kinetic coupling within the distal foot, but this coupling is attributed only in small measure to the windlass mechanism. Additional sources of coupling include foot muscles and elastic energy storage and return within ligaments and tendons. Furthermore, our results suggest that the plantar aponeurosis does not function as a rigid cable but likely has extensibility that affects the effectiveness of the windlass mechanism. Arch structure did not affect foot coupling, suggesting that static arch height or arch flexibility alone may not be adequate predictors of dynamic foot function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.