Poultry litter is a good crude protein supplement for ruminants but must be treated to kill pathogens before feeding. Composting effectively kills pathogens but risks loss of ammonia due to uric acid degradation. The objectives of this study were to test the ability of tannins to reduce pathogens and preserve uric acid during poultry litter composting. In two experiments, poultry litter was mixed with phosphate buffer and distributed to 50-ml tubes (three tubes/treatment per sample day) amended with 1 ml buffer alone or buffer containing pine bark, quebracho, chestnut, or mimosa tannins. Treatments achieved 0.63% (wt/wt) quebracho, chestnut, or mimosa tannins in experiment 1, or 4.5% pine bark or 9% quebracho, chestnut, or mimosa tannins in experiment 2. Tubes were inoculated with a novobiocin- and nalidixic acid-resistant Salmonella typhimurium, closed with caps, and incubated at successive 3-day increments at 22, 37, and 42°C, respectively. In experiment 1, bacterial counts in contents collected on days 0, 6, and 9 revealed a treatment by day effect (p < 0.03), with the Salmonella challenge being 1.3 log10 CFU/g higher in quebracho-treated composts than in untreated controls after 6 days of composting. After 9 days of composting, Salmonella, wildtype Escherichia coli, and total aerobes in untreated and all tannin-treated composts were decreased by about 2.0 log10 CFU/g compared to day 0 numbers (3.06, 3.75, and 7.77 log10 CFU/g, respectively). Urea and ammonia concentrations tended (p < 0.10) to be increased in chestnut-treated composts compared to controls and concentrations of uric acid, urea, and ammonia were higher (p < 0.05) after 9 days of composting than on day 0. Despite higher tannin application in experiment 2, antibacterial effects of treatment or day of composting were not observed (p > 0.05). However, treatment by time of composting interactions was observed (p < 0.05), with quebracho- and chestnut-treated composts accumulating more uric acid after 24 h and 9 days of composting and chestnut-, mimosa- or quebracho-treated composts accumulating less ammonia than untreated composts. Results demonstrate that composting may effectively control pathogens and that tannin treatment can help preserve the crude protein quality of composting poultry litter.
Indicator traits associated with disease resiliency would be useful to improve the health and welfare of feedlot cattle. A post hoc analysis of data collected previously (Kayser et al., 2019a) was conducted to investigate differences in immunologic, physiologic, and behavioral responses of steers (N = 36, initial BW = 386 ± 24 kg) that had differential haptoglobin (HPT) responses to an experimentally induced challenge with Mannheimia haemolytica (MH). Rumen temperature, DMI, and feeding behavior data were collected continuously, and serial blood samples were collected following the MH challenge. Retrospectively, it was determined that 9 of the 18 MH-challenged steers mounted a minimal HPT response, despite having similar leukocyte and temperature responses to other MH-challenged steers with a greater HPT response. Our objective was to examine differences in behavioral and physiological responses between MH-challenged HPT responsive (RES; n = 9), MH-challenged HPT nonresponsive (NON; n = 9), and phosphate-buffered saline-inoculated controls (CON; n = 18). Additionally, 1H NMR analysis was conducted to determine whether the HPT-responsive phenotype affected serum metabolite profiles. The RES steers had lesser (P < 0.05) cortisol concentrations than NON and CON steers. The magnitude of the increases in neutrophil concentrations and rumen temperature, and the reduction in DMI following the MH challenge were greatest (P < 0.05) in RES steers. Univariate analysis of serum metabolites indicated differences between RES, NON, and CON steers following the MH challenge; however, multivariate analysis revealed no difference between HPT-responsive phenotypes. Prior to the MH challenge, RES steers had longer (P < 0.05) head down and bunk visit durations, slower eating rates (P < 0.01) and greater (P < 0.05) daily variances in bunk visit frequency and head down duration compared with NON steers, suggesting that feeding behavior patterns were associated with the HPT-responsive phenotype. During the 28-d postchallenge period, RES steers had decreased (P < 0.05) final BW, tended (P = 0.06) to have lesser DMI, and had greater (P < 0.05) daily variances in head down and bunk visit durations compared with NON steers, which may have been attributed to their greater acute-phase protein response to the MH challenge. These results indicate that the HPT-responsive phenotype affected feeding behavior patterns and may be associated with disease resiliency in beef cattle.
A series of proof of concept studies were developed to determine if a commercial bacteriophage (phage) cocktail could be utilized for the mitigation of Salmonella in bovine peripheral lymph nodes (LN). The first objective sought to determine if exogenous phage could be isolated from the LN following administration. If successful, the second objective sought to determine if once in the LN, could the phage effectively reduce Salmonella . Salmonella Montevideo was inoculated intradermally in multiple sites and administrations, later followed by delivery of the phage cocktail subcutaneously in two injections around each of the right and left prescapular and subiliac LN. At the conclusion of each study, animals were euthanized and the popliteal and above LN examined. The first study was successful, in that transmission electron microscopy revealed the presence of phage in the LN of the treated cattle, that were identical to the strains in the cocktail. Concentrations of phage were increased ( P < 0.01) in the pre-scapular and subiliac LN in the phage-treated versus control cattle. Subsequent studies modified the protocols to increase Salmonella and phage concentrations within the LN. Overall concentrations of Salmonella were increased in the LN compared to the first study and phage treatment decreased ( P < 0.01) Salmonella in the some of the LN. Phage concentrations were numerically ( P = 0.12), but not statistically, increased in the treated cattle. The final study was modified, hypothesizing that a 48h post-mortem period prior to LN removal would facilitate phage/ Salmonella interaction, however, there were no differences ( P > 0.10) in Salmonella concentrations among treatments. Results demonstrated that Salmonella- specific phages administered to live cattle can translocate to the LN, however once in the LN they had limited to no effect on Salmonella within these nodes.
Salmonella is a significant food safety concern in commercial beef production, and some contamination is thought to occur by inclusion of Salmonella-infected peripheral lymph nodes (LN) in ground beef and through fecal contamination. Surveillance in processing plants assists packers in risk management of Salmonella by understanding seasonal trends and risks associated with different cattle types. Approximately 25 fecal samples and 20 LN were collected from animals representing each of five cattle types (cull beef cattle, cull dairy cows, conventional feedlot cattle, all-natural feedlot cattle raised without pharmaceuticals, and grass-finished cattle) and each of five climate regions (mixed-temperatures and dry, mixed-temperatures and humid, hot and humid, hot and dry, cold) during each of three seasons (summer, fall, winter) to better characterize Salmonella inputs into a commercial cattle processing facility. In total, 1,840 fecal samples and 1,550 LN samples were collected. Fecal samples and LN were cultured for Salmonella, and select isolates were serogrouped and screened for antimicrobial resistance. Conventional feedlot cattle had the highest LN Salmonella concentrations (1.17 log10 CFU/g LN) in this data set, while cull dairy cows had the highest fecal Salmonella concentrations (1.96 log10 CFU/g feces). Conventional feedlot cattle and cull dairy cows had the greatest Salmonella prevalence in both LN (32 and 18%, respectively) and feces (37 and 49%, respectively), while all-natural feedlot cattle had the lowest prevalence in the LN (3%) and feces (7%). As expected, Salmonella prevalence and concentration was lowest for all cattle types during winter compared to warmer seasons. When examined by climate region, a greater Salmonella prevalence in both feces and LN was observed in climate region 4 (hot-dry), than the other regions. Only 21 of 50 Salmonella isolates examined for antimicrobial susceptibility were identified as multidrug resistant (MDR); cull dairy cows were responsible for 48% of MDR isolates, cull beef cattle were responsible for 38%, and conventional feedlot, grass-fed, and all-natural feedlot cattle were each responsible for 4.8%. These results indicate that different production schemes, season, and climate region may influence which cattle are most likely to introduce Salmonella to the abattoir, allowing for greater risk awareness during the slaughter process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.