Background Children’s role in SARS-CoV-2 epidemiology remains unclear. We investigated an initially unnoticed SARS-CoV-2 outbreak linked to schools in northern France, beginning as early as mid-January 2020. Aims This retrospective observational study documents the extent of SARS-CoV-2 transmission, linked to an affected high school (n = 664 participants) and primary schools (n = 1,340 study participants), in the context of unsuspected SARS-CoV-2 circulation and limited control measures. Methods Between 30 March and 30 April 2020, all school staff, as well as pupils and their parents and relatives were invited for SARS-CoV-2 antibody testing and to complete a questionnaire covering symptom history since 13 January 2020. Results In the high school, infection attack rates were 38.1% (91/239), 43.4% (23/53), and 59.3% (16/27), in pupils, teachers, and non-teaching staff respectively vs 10.1% (23/228) and 12.0% (14/117) in the pupils’ parents and relatives (p < 0.001). Among the six primary schools, three children attending separate schools at the outbreak start, while symptomatic, might have introduced SARS-CoV-2 there, but symptomatic secondary cases related to them could not be definitely identified. In the primary schools overall, antibody prevalence in pupils sharing classes with symptomatic cases was higher than in pupils from other classes: 15/65 (23.1%) vs 30/445 (6.7%) (p < 0.001). Among 46 SARS-CoV-2 seropositive pupils < 12 years old, 20 were asymptomatic. Whether past HKU1 and OC43 seasonal coronavirus infection protected against SARS-CoV-2 infection in 6–11 year olds could not be inferred. Conclusions Viral circulation can occur in high and primary schools so keeping them open requires consideration of appropriate control measures and enhanced surveillance.
Background: Children are underrepresented in the COVID-19 pandemic and often experience milder disease than adolescents and adults. Reduced severity is possibly due to recent and more frequent seasonal human coronaviruses (HCoV) infections. We assessed the seroprevalence of SARS-CoV-2 and seasonal HCoV specific antibodies in a large cohort in north-eastern France.
Background Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a complex antibody response that varies by orders of magnitude between individuals and over time. Methods We developed a multiplex serological test for measuring antibodies to five SARS-CoV-2 antigens and the Spike proteins of seasonal coronaviruses. We measured antibody responses in cohorts of hospitalized patients and healthcare workers followed for up to eleven months after symptoms. A mathematical model of antibody kinetics was used to quantify the duration of antibody responses. Antibody response data were used to train algorithms for estimating time since infection. Results One year after symptoms, we estimate that 36% (95% range: 11%, 94%) of anti-Spike IgG remains, 31% (9%, 89%) anti-RBD IgG remains, and 7% (1%, 31%) anti-Nucleocapsid IgG remains. The multiplex assay classified previous infections into time intervals of 0–3 months, 3–6 months, and 6–12 months. This method was validated using data from a sero-prevalence survey in France, demonstrating that historical SARS-CoV-2 transmission can be reconstructed using samples from a single survey. Conclusions In addition to diagnosing previous SARS-CoV-2 infection, multiplex serological assays can estimate the time since infection which can be used to reconstruct past epidemics.
Memory B-cell and antibody responses to the SARS-CoV-2 spike protein contribute to long-term immune protection against severe COVID-19, which can also be prevented by antibody-based interventions. Here, wide SARS-CoV-2 immunoprofiling in Wuhan COVID-19 convalescents combining serological, cellular, and monoclonal antibody explorations revealed humoral immunity coordination. Detailed characterization of a hundred SARS-CoV-2 spike memory B-cell monoclonal antibodies uncovered diversity in their repertoire and antiviral functions. The latter were influenced by the targeted spike region with strong Fc-dependent effectors to the S2 subunit and potent neutralizers to the receptor-binding domain. Amongst those, Cv2.1169 and Cv2.3194 antibodies cross-neutralized SARS-CoV-2 variants of concern, including Omicron BA.1 and BA.2. Cv2.1169, isolated from a mucosa-derived IgA memory B cell demonstrated potency boost as IgA dimers and therapeutic efficacy as IgG antibodies in animal models. Structural data provided mechanistic clues to Cv2.1169 potency and breadth. Thus, potent broadly neutralizing IgA antibodies elicited in mucosal tissues can stem SARS-CoV-2 infection, and Cv2.1169 and Cv2.3194 are prime candidates for COVID-19 prevention and treatment.
BackgroundKnowledge of prevalence rates and distribution of human papillomavirus (HPV) genotypes prior high HPV vaccine coverage is necessary to assess its expected impact on HPV ecology and on cervical lesions and cancers.MethodsResidual specimens of cervical cytology (N = 6,538) were obtained from 16 sites participating in organised cervical cancer screening pilot programs throughout France, anonymised and tested for HPV DNA using the PapilloCheck® genotyping test. Samples were stratified according to age of women and cytological grades.ResultsThe age-standardised prevalence rates of HPV 16 and/or 18 (with or without other high-risk types) was 47.2% (95% Confidence Interval, CI: 42.4–52.1) in high-grade squamous intraepithelial lesions (HSILs), 20.2% in low-grade SIL (95% CI: 16.7–23.7) and 3.9% (95% CI: 2.8–5.1) in normal cytology. Overall HR HPV were detected in 13.7% (95%I CI: 11.7–15.6) of normal cytology. In women below 30 years of age, 64% of HSILs were associated with HPV16 and/or 18. In our study population, HPV16 was the most commonly detected type in all cervical grades with prevalence rates ranking from 3.0% in normal cytology to 50.9% in HSILs. HPV16 was also detected in 54% (27/50) of invasive cervical cancers including 5 adenocarcinomas.ConclusionHPV16 was strongly associated with cervical precancer and cancer. The high prevalence rates of HPV16/18 infection among women below 30 years of age with HSILs suggests that the impact of vaccination would be primarily observed among young women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.