The essentiality of n-6 polyunsaturated fatty acids (PUFA) is described in relation to a thymus/thymocyte accretion of arachidonic acid (20:4n-6, AA) in early development, and the high requirement of lymphoid and other cells of the immune system for AA and linoleic acid (1 8:2n-6, LA) for membrane phospholipids. Low n-6 PUFA intakes enhance whereas high intakes decrease certain immune functions. Evidence from in vitro and in vivo studies for a role of AA metabolites in immune cell development and functions shows that they can limit or regulate cellular immune reactions and can induce deviation toward a T helper (Th)2-like immune response. In contrast to the effects of the oxidative metabolites of AA, the longer-chain n-6 PUFA produced by gamma-linolenic acid (18:3n-6, GLA) feeding decreases the Th2 cytokine and immunoglobulin (Ig)G1 antibody response. The n-6 PUFA, GLA, dihomo-gamma-linolenic acid (20:3n-6, DHLA) and AA, and certain oxidative metabolites of AA can also induce T-regulatory cell activity, e.g., transforming growth factor (TGF)-beta-producing T cells; GLA feeding studies also demonstrate reduced proinflammatory interleukin (IL)-1 and tumor necrosis factor (TNF)-alpha production. Low intakes of long-chain n-3 fatty acids (fish oils) enhance certain immune functions, whereas high intakes are inhibitory on a wide range of functions, e.g., antigen presentation, adhesion molecule expression, Th1 and Th2 responses, proinflammatory cytokine and eicosanoid production, and they induce lymphocyte apoptosis. Vitamin E has a demonstrable critical role in long-chain n-3 PUFA interactions with immune functions, often reversing the effects of fish oil. The effect of dietary fatty acids on animal autoimmune disease models depends on both the autoimmune model and the amount and type of fatty acids fed. Diets low in fat, essential fatty acid deficient (EFAD), or high in long-chain n-3 PUFA from fish oils increase survival and reduce disease severity in spontaneous autoantibody-mediated disease, whereas high-fat LA-rich diets increase disease severity. In experimentally induced T cell-mediated autoimmune disease, EFAD diets or diets supplemented with long-chain n-3 PUFA augment disease, whereas n-6 PUFA prevent or reduce the severity. In contrast, in both T cell- and antibody-mediated autoimmune disease, the desaturated/elongated metabolites of LA are protective. PUFA of both the n-6 and n-3 families are clinically useful in human autoimmune-inflammatory disorders, but the precise mechanisms by which these fatty acids exert their clinical effects are not well understood. Finally, the view that all n-6 PUFA are proinflammatory requires revision, in part, and their essential regulatory and developmental role in the immune system warrants appreciation.
The diet of the studied Chinese mothers is less balanced with regard to the levels of omega-6 and omega-3 polyunsaturated fatty acids (PUFAs) than that of the Swedish mothers, which is also mirrored in the breast milk of these mothers. The clinical relevance of the difference between the levels of LC-PUFAs in the breast milk of Chinese and Swedish mothers may be elucidated by a follow-up study of the cognitive and visual functions of the infants involved.
SUMMARYPolyunsaturated fatty acids are known to affect the immune response and administration of the omega-6 fatty acid linoleic acid has been reported to be beneficial in multiple sclerosis (MS) and EAE. In this study we have investigated the effects of oral feeding of plant lipid rich in the omega-6 fatty acid gamma-linolenic acid from Borago officinalis on acute and relapse disease and the immune response in EAE using SJL mice. EAE was induced by an encephalitogenic peptide (92±106) of myelin oligodendrocyte glycoprotein (MOG), and mice were fed the plant lipid daily from 7 days after EAE induction to assess the effects on acute disease and from day 25 to assess the effects on disease relapse. The clinical incidence and histological manifestations of acute EAE, and the clinical relapse phase of chronic relapsing EAE (CREAE) were markedly inhibited by omega-6 fatty acid feeding. A significant increase in the production of TGF-b 1 in response to concanavalin A (Con A) at day 13 and a significant increase in TGF-b 1 and PGE 2 to Con A, PPD and MOG peptide (92±106) at day 21 were detected in spleen mononuclear cells from fatty acid-fed mice. There was no difference in interferon-gamma, IL-4 and IL-2 production between the fatty acid-fed and control groups. Significantly higher TGF-b mRNA expression was found in the spleens of omega-6 fatty acid-fed mice at day 21. There were no differences in spleen cell proliferative response to Con A, PPD and MOG peptide (92±106). Biochemical analysis of spleen cell membrane fatty acids revealed significant increases in the eicosanoid precursor fatty acids dihomo-g-linolenic acid and arachidonic acid in response to gamma-linolenic acid feeding, indicating rapid metabolism to longer chain omega-6 fatty acids. These results show that oral feeding of gammalinolenic acid-rich plant lipid markedly affects the disease course of acute EAE and CREAE and is associated with an increase in cell membrane long chain omega-6 fatty acids, production of PGE 2 and gene transcription and, on activation, secretion of TGF-b 1.Keywords experimental autoimmune encephalomyelitis MOG peptide omega-6 fatty acids arachidonic acid transforming growth factor-beta 1 prostaglandin E 2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.