To determine the effect of hindlimb suspension on body fluid volume, salt and water balance, and relevant hormones, two series of experiments were performed in an experimental protocol including periods of isolation (7 days), horizontal attachment (7 days), and suspension (14 days). 1) During the first experiment, water and electrolyte balance, arginine vasopressin (AVP), and guanosine 3',5'- cyclic monophosphate (cGMP) were determined in urine, atrial natriuretic peptide in plasma and atria, and renin concentration and AVP in plasma in 30 rats. 2) During the second experiment, blood volume and extracellular fluid volume were measured by a dilution technique (Evans blue and sodium thiocyanate) in another 30 rats. We observed a pronounced and early effect of horizontal attachment on the renal variables. After 48 h, diuresis (49%), natriuresis (44%), kaliuresis (36%), osmotic load (39%), creatinine (28%), and AVP excretion (155%) were significantly increased in attached rats (P < 0.05). There was no short-term (24-h) effect of suspension on urine flow and Na+, K+, creatinine, and AVP excretion, but the urine cGMP decreased significantly (45%; P < 0.05). Significant decreases in natriuresis, kaliuresis, urine creatinine, and osmotic load occurred in the suspension group 7 days after suspension. After the 14-day tail suspension, plasma volume and extracellular fluid volume measured in suspended rats were not different from isolated rat values, whereas plasma volume increased by 15% (P < 0.05) in the attached rats. Plasma immunoreactive plasma atrial natriuretic levels of suspended rats were significantly reduced by 35% vs. isolated rats (P < 0.001) and by 18% vs. attached rats (P < 0.05). By using this experimental protocol, the physiological alterations revealed that suspension produced some acute and long-term effects, but the fixation to the suspension device, restraint, and confinement have their own influence on fluid distribution and renal function.