Inertial measurement units (IMUs) have shown promising outcomes for estimating gait event detection (GED) and ground reaction force (GRF). This study aims to determine the best sensor location for GED and GRF prediction in gait using data from IMUs for healthy and medial knee osteoarthritis (MKOA) individuals. In this study, 27 healthy and 18 MKOA individuals participated. Participants walked at different speeds on an instrumented treadmill. Five synchronized IMUs (Physilog®, 200 Hz) were placed on the lower limb (top of the shoe, heel, above medial malleolus, middle and front of tibia, and on medial of shank close to knee joint). To predict GRF and GED, an artificial neural network known as reservoir computing was trained using combinations of acceleration signals retrieved from each IMU. For GRF prediction, the best sensor location was top of the shoe for 72.2% and 41.7% of individuals in the healthy and MKOA populations, respectively, based on the minimum value of the mean absolute error (MAE). For GED, the minimum MAE value for both groups was for middle and front of tibia, then top of the shoe. This study demonstrates that top of the shoe is the best sensor location for GED and GRF prediction.
Segmenting the gait cycle into multiple phases using gait event detection (GED) is a well-researched subject with many accurate algorithms. However, the algorithms that are able to perform accurate and robust GED for real-life environments and physical diseases tend to be too complex for their implementation on simple hardware systems limited in computing power and memory, such as those used in wearable devices. This study focuses on a numerical implementation of a reservoir computing (RC) algorithm called the echo state network (ESN) that is based on simple computational steps that are easy to implement on portable hardware systems for real-time detection. RC is a neural network method that is widely used for signal processing applications and uses a fast-training method based on a ridge regression adapted to the large quantity and variety of IMU data needed to use RC in various real-life environment GED. In this study, an ESN was used to perform offline GED with gait data from IMU and ground force sensors retrieved from three databases for a total of 28 healthy adults and 15 walking conditions. Our main finding is that despite its low complexity, ESN is robust for GED, with performance comparable to other state-of-the-art algorithms. Our results show the ESN is robust enough to obtain good detection results in all conditions if the algorithm is trained with variable data that match those conditions. The distribution of the mean absolute errors (MAE) between the detection times from the ESN and the force sensors were between 40 and 120 ms for 6 defined gait events (95th percentile). We compared our ESN with four different state-of-the-art algorithms from the literature. The ESN obtained a MAE not more than 10 ms above three other reference algorithms for normal walking indoor and outdoor conditions and yielded the 2nd lowest MAE and the 2nd highest true positive rate and specificity when applied to outdoor walking and running conditions. Our work opens the door to using the ESN as a GED for applications in wearable sensors for long-term patient monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.