Freeze-drying is the preferred method for stabilizing live, attenuated virus vaccines. After decades of research on several aspects of the process like the stabilization and destabilization mechanisms of the live, attenuated viruses during freeze-drying, the optimal formulation components and process settings are still matter of research. The molecular complexity of live, attenuated viruses, the multiple destabilization pathways and the lack of analytical techniques allowing the measurement of physicochemical changes in the antigen's structure during and after freeze-drying mean that they form a particular lyophilization challenge. The purpose of this review is to overview the available information on the development of the freeze-drying process of live, attenuated virus vaccines, herewith focusing on the freezing and drying stresses the viruses can undergo during processing as well as on the mechanisms and strategies (formulation and process) that are used to stabilize them during freeze-drying.
This study evaluated thermoplastic polyurethanes (TPUR) as matrix excipients for the production of oral solid dosage forms via hot melt extrusion (HME) in combination with injection molding (IM). We demonstrated that TPURs enable the production of solid dispersions -crystalline API in a crystalline carrier -at an extrusion temperature below the drug melting temperature (Tm) with a drug content up to 65% (wt.%). The release of metoprolol tartrate was controlled over 24h, whereas a complete release of diprophylline was only possible in combination with a drug release modifier: polyethylene glycol 4000 (PEG 4000) or Tween 80. No burst release nor a change in tablet size and geometry was detected for any of the formulations after dissolution testing. The total matrix porosity increased gradually upon drug release. Oral administration of TPUR did not affect the GI ecosystem (pH, bacterial count, short chain fatty acids), monitored via the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). The high drug load (65wt.%) in combination with (in-vitro and in-vivo) controlled release capacity of the formulations, is noteworthy in the field of formulations produced via HME/IM.
Abstract:This article examines the applicability of Fourier Transform Infrared (FTIR) spectroscopy to detect the applied virus medium volume (i.e., during sample filling), to evaluate the virus state and to distinguish between different vaccine doses in a freeze dried live, attenuated vaccine formulation. Therefore, different formulations were freeze dried after preparing them with different virus medium volumes (i.e., 30µl, 100µl and 400µl) or after applying different pre-freeze-drying sample treatments (resulting in different virus states); i.e., (i) as done for the commercial formulation; (ii) samples without virus medium (placebo); (iii) samples with virus medium but free from antigen; (iv) concentrated samples obtained via a centrifugal filter device; and (v) samples stressed by 96h exposure to room temperature; or by using different doses (placebo, 25-dose vials, 50-dose-vials and 125-dose vials). Each freeze-dried product was measured directly after freeze-drying with FTIR spectroscopy. The collected spectra were analyzed using principal component analysis (PCA) and evaluated at three spectral regions which might provide information on the coated proteins of freeze dried live, attenuated viruses: (i) 1700-1600cm -1 (amide I band), 1600-1500cm -1 (amide II band) and 1200-1350cm -1 (amide III band). The latter spectral band does not overlap with water signals and is hence not influenced by residual moisture in the samples.It was proven that FTIR could distinguish between the freeze-dried samples prepared using different virus medium volumes, containing different doses and using different pre-freeze-drying sample treatments in the amide III region.Keywords: FTIR spectroscopy, principal component analysis (PCA), NIR spectroscopy, freeze drying, live, attenuated vaccines Introduction:
This article examines the applicability of near-infrared spectroscopy (NIRS) to evaluate the virus state in a freeze-dried live, attenuated vaccine formulation. Therefore, this formulation was freeze-dried using different virus volumes and after applying different pre-freeze-drying virus treatments (resulting in different virus states): (i) as used in the commercial formulation; (ii) without antigen (placebo); (iii) concentrated via a centrifugal filter device; and (iv) stressed by 96 h exposure to room temperature. Each freeze-dried product was measured directly after freeze-drying with NIR spectroscopy and the spectra were analyzed using principal component analysis (PCA). Herewith, two NIR spectral regions were evaluated: (i) the 7300-4000 cm(-1) region containing the amide A/II band which might reflect information on the coated proteins of freeze-dried live, attenuated viruses; and (ii) the C-H vibration overtone regions (10,000-7500 and 6340-5500 cm(-1) ) which might supply information on the lipid layer surrounding the freeze-dried live, attenuated viruses. The different pre-freeze-drying treated live, attenuated virus formulations (different virus states and virus volumes) resulted in different clusters in the scores plots resulting from the PCA of the collected NIR spectra. Secondly, partial least squares discriminant analysis models (PLS-DA) were developed and evaluated, allowing classification of the freeze-dried formulations according to virus pretreatment. The results of this study suggest the applicability of NIR spectroscopy for evaluating live, attenuated vaccine formulations with respect to their virus pretreatment and virus volume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.