The optimal airway management strategy during cardiopulmonary resuscitation is uncertain. In the case of out-of-hospital cardiac arrest, a high chest compression fraction is paramount to obtain the return of spontaneous circulation and improve survival and neurological outcomes. To improve this fraction, providing continuous chest compressions should be more effective than using the conventional 30:2 ratio. Airway management should, however, be adapted, since face-mask ventilation can hardly be carried out while continuous compressions are administered. The early insertion of a supraglottic device could therefore improve the chest compression fraction by allowing ventilation while maintaining compressions. This is a protocol for a multicenter, parallel, randomized simulation study. Depending on randomization, each team made up of paramedics and emergency medical technicians will manage the 10-min scenario according either to the standard approach (30 compressions with two face-mask ventilations) or to the experimental approach (continuous manual compressions with early insertion of an i-gel® supraglottic device to deliver asynchronous ventilations). The primary outcome will be the chest compression fraction during the first two minutes of cardiopulmonary resuscitation. Secondary outcomes will be chest compression fraction (per cycle and overall), compressions and ventilations quality, time to first shock and to first ventilation, user satisfaction, and providers’ self-assessed cognitive load.
Early insertion of a supraglottic airway (SGA) device could improve chest compression fraction by allowing providers to perform continuous chest compressions or by shortening the interruptions needed to deliver ventilations. SGA devices do not require the same expertise as endotracheal intubation. This study aimed to determine whether the immediate insertion of an i-gel® while providing continuous chest compressions with asynchronous ventilations could generate higher CCFs than the standard 30:2 approach using a face-mask in a simulation of out-of-hospital cardiac arrest. A multicentre, parallel, randomised, superiority, simulation study was carried out. The primary outcome was the difference in CCF during the first two minutes of resuscitation. Overall and per-cycle CCF quality of compressions and ventilations parameters were also compared. Among thirteen teams of two participants, the early insertion of an i-gel® resulted in higher CCFs during the first two minutes (89.0% vs. 83.6%, p = 0.001). Overall and per-cycle CCF were consistently higher in the i-gel® group, even after the 30:2 alternation had been resumed. In the i-gel® group, ventilation parameters were enhanced, but compressions were significantly shallower (4.6 cm vs. 5.2 cm, p = 0.007). This latter issue must be addressed before clinical trials can be considered.
There is considerable controversy regarding the optimal airway management strategy in the case of out-of-hospital cardiac arrest. Registry-based studies yield contradicting results and the actual impact of using supraglottic devices on survival and neurological outcomes remains unknown. In a recent simulation study, the use of an i-gel® device was associated with significantly shallower chest compressions. It was hypothesized that these shallower compressions could be linked to the provision of chest compressions in an over-the-head position, to the cumbersome airway management apparatus, and to a shallower i-gel® insertion depth in the manikin. To test this hypothesis, we carried out a post hoc analysis, which is described in this report. Briefly, no association was found between the over-the-head position and compression depth.
The International Liaison Committee on Resuscitation regularly publishes a Consensus on Science with Treatment Recommendations, but guidelines can nevertheless differ when knowledge gaps persist. In case of pediatric cardiac arrest, the American Heart Association recommends following the adult resuscitation sequence, i.e., starting with chest compressions. Conversely, the European Resuscitation Council advocates the delivery of five initial rescue breaths before starting chest compressions. This was a superiority, randomized cross-over trial designed to determine the impact of these two resuscitation sequences on alveolar ventilation in a pediatric model of cardiac arrest. The primary outcome was alveolar ventilation during the first minute of resuscitation maneuvers according to the guidelines used. A total of 56 resuscitation sequences were recorded (four sequences per team of two participants). The ERC approach enabled higher alveolar ventilation volumes (370 mL [203–472] versus 276 mL [140–360], p < 0.001) at the cost of lower chest compression fractions (57% [54;64] vs. 66% [59;68], p < 0.001). Although statistically significant, the differences found in this simulation study may not be clinically relevant. Therefore, and because of the importance of overcoming barriers to resuscitation, advocating a pediatric-specific resuscitation algorithm may not be an appropriate strategy.
Most pediatric out-of-hospital cardiac arrests (OHCAs) are caused by hypoxia, which is generally consecutive to respiratory failure. To restore oxygenation, prehospital providers usually first use basic airway management techniques, i.e., bag-valve-mask (BVM) devices. These devices present several drawbacks, most of which could be avoided using supraglottic airway devices. These intermediate airway management (IAM) devices also present significant advantages over tracheal intubation: they are associated with higher success and lower complication rates in the prehospital setting. There are, however, few data regarding the effect of early IAM in pediatric OHCA. This paper details the protocol of a trial designed to evaluate the impact of this airway management strategy on ventilation parameters through a simulated, multicenter, randomized, crossover trial. The hypothesis underlying this study protocol is that early IAM without prior BVM ventilations could improve the ventilation parameters in comparison with the standard approach, which consists in BVM ventilations only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.