One of the main challenges for the implementation of artificial intelligence (AI) in agriculture includes the low replicability and the corresponding difficulty in systematic data gathering, as no two fields are exactly alike. Therefore, the comparison of several pilot experiments in different fields, weather conditions and farming techniques enhances the collective knowledge. Thus, this work provides a summary of the most recent research activities in the form of research projects implemented and validated by the authors in several European countries, with the objective of presenting the already achieved results, the current investigations and the still open technical challenges. As an overall conclusion, it can be mentioned that even though in their primary stages in some cases, AI technologies improve decision support at farm level, monitoring conditions and optimizing production to allow farmers to apply the optimal number of inputs for each crop, thereby boosting yields and reducing water use and greenhouse gas emissions. Future extensions of this work will include new concepts based on autonomous and intelligent robots for plant and soil sample retrieval, and effective livestock management.
Most researches on human activity recognition do not take into account the temporal localization of actions. In this paper, a new method is designed to model both actions and their temporal domains. This method is based on a new Hough method which outperforms previous published ones on honeybee dataset thanks to a deeper optimization of the Hough variables. Experiments are performed to select skeleton features adapted to this method and relevant to capture human actions. With these features, our pipeline improves stateof-the-art performances on TUM dataset and outperforms baselines on several public datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.