Traditionalregister-transfer level design methodologies for systems-on-chip are failing to keep up with the growing complexity of embedded applications and architectures. A well-known solution is to raise the level of design abstraction by using system-level methodologies. The refinement from system-level specifications to concrete implementations is an essential step in a system-level design methodology. This article presents a novel methodology for the refinement from transaction-level communications to pin-and cycleaccurate protocols as well as the generation of synthesizable hardware from system-level specifications. Automatic communication refinement and hardware synthesis were successfully applied to a rover guiding system. Hand-coded and automatically generated register-transfer level modules of the rover are compared. Results show that a hardware/software implementation of the guiding system using generated register-transfer level modules has overheads of less than one percent in latency and hardware area when compared to an implementation using hand-coded modules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.