XCoe2 may play a pivotal role in the transcriptional cascade that specifies primary neurons in Xenopus embryos: by maintaining Delta-Notch signalling, XCoe2 stabilises the higher neural potential of selected progenitor cells that express X-ngnr-1, ensuring the transition between neural competence and irreversible commitment to a neural fate; and it promotes neuronal differentiation by activating XNeuroD expression, directly or indirectly.
In order to determine whether G protein-coupled receptors play a role in early embryogenesis, we looked for cDNA fragments amplified between primers located in consensus sequences of transmembrane segments. Using one such amplified fragment as a probe, we cloned a novel member of the G protein-coupled receptor superfamily in Xenopus. Alignment of the deduced protein sequence with that of other receptors discloses some homology with angiotensin receptors. A single transcript of 2.5 kb is detected at the late blastula stage and its expression increases during gastrulation. In situ hybridization reveals transcripts initially in the ventrolateral involuting marginal zone and later in the lateral plate mesoderm. At larval stages, the transcript is expressed in procardiac tube and forming blood vessels, where it is localized in the inner endothelial layer. Thus, this gene traces an endothelial lineage and represents a very early and unique marker in Xenopus of the specification of cardiac and vascular endothelia. We propose the name of X-msr for mesenchyme-associated serpentine receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.