L-glutamate is both the major brain excitatory neurotransmitter and a potent neurotoxin in mammals. Glutamate excitotoxicity is partly responsible for cerebral traumas evoked by ischemia and has been implicated in several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). In contrast, very little is known about the function or potential toxicity of glutamate in the insect brain. Here, we show that decreasing glutamate buffering capacity is neurotoxic in Drosophila. We found that the only Drosophila high-affinity glutamate transporter, dEAAT1, is selectively addressed to glial extensions that project ubiquitously through the neuropil close to synaptic areas. Inactivation of dEAAT1 by RNA interference led to characteristic behavior deficits that were significantly rescued by expression of the human glutamate transporter hEAAT2 or the administration in food of riluzole, an anti-excitotoxic agent used in the clinic for human ALS patients. Signs of oxidative stress included hypersensitivity to the free radical generator paraquat and rescue by the antioxidant melatonin. Inactivation of dEAAT1 also resulted in shortened lifespan and marked brain neuropil degeneration characterized by widespread microvacuolization and swollen mitochondria. This suggests that the dEAAT1-deficient fly provides a powerful genetic model system for molecular analysis of glutamate-mediated neurodegeneration.
In flies and humans, bitter chemicals are known to inhibit sugar detection, but the adaptive role of this inhibition is often overlooked. At best, this inhibition is described as contributing to the rejection of potentially toxic food, but no studies have addressed the relative importance of the direct pathway that involves activating bitter-sensitive cells versus the indirect pathway represented by the inhibition of sugar detection. Using toxins to selectively ablate or inactivate populations of bitter-sensitive cells, we assessed the behavioral responses of flies to sucrose mixed with strychnine (which activates bitter-sensitive cells and inhibits sugar detection) or with L-canavanine (which only activates bitter-sensitive cells). As expected, flies with ablated bitter-sensitive cells failed to detect L-canavanine mixed with sucrose in three different feeding assays (proboscis extension responses, capillary feeding, and two-choice assays). However, such flies were still able to avoid strychnine mixed with sucrose. By means of electrophysiological recordings, we established that bitter molecules differ in their potency to inhibit sucrose detection and that sugar-sensing inhibition affects taste cells on the proboscis and the legs. The optogenetic response of sugar-sensitive cells was not reduced by strychnine, thus suggesting that this inhibition is linked directly to sugar transduction. We postulate that sugar-sensing inhibition represents a mechanism in insects to prevent ingesting harmful substances occurring within mixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.