These preliminary results suggest that, according to T2 measurements, ACT repair tissue at 10-15 months differs from normal cartilage and probably lacks the preferential collagen arrangement of normal cartilage, while according to dGEMRIC a varying degree of proteoglycan replenishment takes place. Combining these two quantitative magnetic resonance imaging techniques enables a more comprehensive characterization of cartilage repair than before.
Various quantitative magnetic resonance imaging (qMRI) biomarkers, including but not limited to parametric MRI mapping, semiquantitative evaluation, and morphological assessment, have been successfully applied to assess cartilage repair in both animal and human studies. Through the interaction between interstitial water and constituent macromolecules the compositional and structural properties of cartilage can be evaluated. In this review a comprehensive view of a variety of quantitative techniques, particularly those involving parametric mapping, and their relationship to the properties of cartilage repair is presented. Some techniques, such as T2 relaxation time mapping and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), are well established, while the full potential of more recently introduced techniques remain to be demonstrated. A combination of several MRI techniques is necessary for a comprehensive characterization of chondral repair.
MDCT is accurate in the assessment of blunt multitrauma patients. The decision to treat the patient can be made on the basis of MDCT with a reasonable level of certainty.
Background: A new pattern of bronchopulmonary dysplasia (BPD) has emerged with the improved survival of preterm children. Objectives: Our aim was to characterize structural abnormalities associated with new BPD and to evaluate whether the severity of high-resolution computed tomography (HRCT) changes is associated with lung function. Methods: HRCT scans were performed on 21 schoolchildren with a history of new BPD (mild, n = 9; moderate, n = 4; and severe, n = 8) with a mean age of 12.7 years (range: 8.7-16.7). Scans were interpreted by 2 radiologists using a structured scoring system. Spirometry (forced expiratory volume in 1 s [FEV1] and maximum mid-expiratory flow [MMEF]) and the diffusion capacity of the lung for carbon monoxide (DLCO) were measured. Results: At least 1 HRCT abnormality was evident in 17 children (81%), including linear-to-triangular subpleural opacities (71%), air trapping (29%), mosaic perfusion (24%), peribronchial thickening (14%), and emphysema (14%). The HRCT score was higher in the severe BPD group (11.50; 95% CI 2.86-20.14) than in the mild or moderate BPD group (1.39; 95% CI 0.24-2.54, and 2.75; 95% CI 0.28-5.22, respectively). HRCT scores were inversely related to FEV1 (β -4.23; 95% CI -6.97 to -1.49, p = 0.004) and MMEF (β -3.45; 95% CI -6.10 to -0.80, p = 0.013) but not to DLCO. The duration of the initial mechanical ventilation was associated with HRCT scores (p = 0.014). Conclusions: Structural lung abnormalities are common among schoolchildren with a history of new BPD, resembling abnormalities described in the presurfactant era. HRCT abnormalities are associated with the duration of early mechanical ventilation and the severity of BPD and they are correlated with spirometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.