Rising population
density and global mobility are among the reasons
why pathogens such as SARS-CoV-2, the virus that causes COVID-19,
spread so rapidly across the globe. The policy response to such pandemics
will always have to include accurate monitoring of the spread, as
this provides one of the few alternatives to total lockdown. However,
COVID-19 diagnosis is currently performed almost exclusively by reverse
transcription polymerase chain reaction (RT-PCR). Although this is
efficient, automatable, and acceptably cheap, reliance on one type
of technology comes with serious caveats, as illustrated by recurring
reagent and test shortages. We therefore developed an alternative
diagnostic test that detects proteolytically digested SARS-CoV-2 proteins
using mass spectrometry (MS). We established the Cov-MS consortium,
consisting of 15 academic laboratories and several industrial partners
to increase applicability, accessibility, sensitivity, and robustness
of this kind of SARS-CoV-2 detection. This, in turn, gave rise to
the Cov-MS Digital Incubator that allows other laboratories to join
the effort, navigate, and share their optimizations and translate
the assay into their clinic. As this test relies on viral proteins
instead of RNA, it provides an orthogonal and complementary approach
to RT-PCR using other reagents that are relatively inexpensive and
widely available, as well as orthogonally skilled personnel and different
instruments. Data are available via ProteomeXchange with identifier
PXD022550.
Rising population density and global mobility are among the reasons why pathogens such as SARS-CoV-2, the virus that causes COVID-19, spread so rapidly across the globe. The policy response to such pandemics will always have to include accurate monitoring of the spread, as this provides one of the few alternatives to total lockdown. However, COVID-19 diagnosis is currently performed almost exclusively by Reverse Transcription Polymerase Chain Reaction (RT-PCR). Although this is efficient, automatable and acceptably cheap, reliance on one type of technology comes with serious caveats, as illustrated by recurring reagent and test shortages. We therefore developed an alternative diagnostic test that detects proteolytically digested SARS-CoV-2 proteins using Mass Spectrometry (MS). We established the Cov-MS consortium, consisting of fifteen academic labs and several industrial partners to increase applicability, accessibility, sensitivity and robustness of this kind of SARS-CoV-2 detection. This in turn gave rise to the Cov-MS Digital Incubator that allows other labs to join the effort, navigate and share their optimizations, and translate the assay into their clinic. As this test relies on viral proteins instead of RNA, it provides an orthogonal and complementary approach to RT-PCR, using other reagents that are relatively inexpensive and widely available, as well as orthogonally skilled personnel and different instruments. Data are available via ProteomeXchange with identifier PXD022550.
The most frequently detected substances prohibited by the World Anti-Doping Agency (WADA) belong to the anabolic steroids class. The most challenging compounds among this class are the endogenous anabolic steroids, which are detected by quantitative measurement of testosterone (T) and its metabolites with a so-called "steroid profiling" method. The current steroid profile is based on the concentrations and ratios of the sum of free and glucuronidated steroids. Recently, our group developed a steroid profiling method for the detection of three free steroids and 14 intact steroid conjugates, including both the glucuronic acid conjugated and sulfated fraction. The study aimed at evaluating the long-term stability of steroid conjugate concentrations and ratios, and the influence of different endogenous steroids on this extended steroid profile. A single dose of oral T undecanoate (TU), topical T gel, topical dihydrotestosterone (DHT) gel, and oral dehydroepiandrosterone (DHEA) was administered to six healthy male volunteers. One additional volunteer with a homozygote deletion of the UGT2B17 gene (del/del genotype) received a single topical dose of T gel. An intramuscular dose of TU was administered to another volunteer. To avoid fluctuation of steroid concentrations caused by variations in urinary flow rates, steroid ratios were calculated and evaluated as possible biomarkers for the detection of endogenous steroid abuse with low doses. Overall, sulfates do not have substantial additional value in prolonging detection times for the investigated endogenous steroids and administration doses.The already monitored glucuronides were overall the best markers and were sufficient to detect the administered steroids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.