Cadmium telluride, CdTe, is now firmly established as the basis for the market-leading thin-film solar-cell technology. With laboratory efficiencies approaching 20 per cent, the research and development targets for CdTe are to reduce the cost of power generation further to less than half a US dollar per watt (ref. 2) and to minimize the environmental impact. A central part of the manufacturing process involves doping the polycrystalline thin-film CdTe with CdCl2. This acts to form the photovoltaic junction at the CdTe/CdS interface and to passivate the grain boundaries, making it essential in achieving high device efficiencies. However, although such doping has been almost ubiquitous since the development of this processing route over 25 years ago, CdCl2 has two severe disadvantages; it is both expensive (about 30 cents per gram) and a water-soluble source of toxic cadmium ions, presenting a risk to both operators and the environment during manufacture. Here we demonstrate that solar cells prepared using MgCl2, which is non-toxic and costs less than a cent per gram, have efficiencies (around 13%) identical to those of a CdCl2-processed control group. They have similar hole densities in the active layer (9 × 10(14) cm(-3)) and comparable impurity profiles for Cl and O, these elements being important p-type dopants for CdTe thin films. Contrary to expectation, CdCl2-processed and MgCl2-processed solar cells contain similar concentrations of Mg; this is because of Mg out-diffusion from the soda-lime glass substrates and is not disadvantageous to device performance. However, treatment with other low-cost chlorides such as NaCl, KCl and MnCl2 leads to the introduction of electrically active impurities that do compromise device performance. Our results demonstrate that CdCl2 may simply be replaced directly with MgCl2 in the existing fabrication process, thus both minimizing the environmental risk and reducing the cost of CdTe solar-cell production.
We examine ZnSnN2, a member of the class of materials contemporarily termed “earth-abundant element semiconductors,” with an emphasis on evaluating its suitability for photovoltaic applications. It is predicted to crystallize in an orthorhombic lattice with an energy gap of 2 eV. Instead, using molecular beam epitaxy to deposit high-purity, single crystal as well as highly textured polycrystalline thin films, only a monoclinic structure is observed experimentally. Far from being detrimental, we demonstrate that the cation sublattice disorder which inhibits the orthorhombic lattice has a profound effect on the energy gap, obviating the need for alloying to match the solar spectrum.
Determining cost-effective semiconductors exhibiting desirable properties for commercial photoelectrochemical water splitting remains a challenge. Herein, we report a Sb 2 Se 3 semiconductor that satisfies most requirements for an ideal high-performance photoelectrode, including a small band gap and favourable cost, optoelectronic properties, processability, and photocorrosion stability. Strong anisotropy, a major issue for Sb 2 Se 3 , is resolved by suppressing growth kinetics via close space sublimation to obtain high-quality compact thin films with favourable crystallographic orientation. The Sb 2 Se 3 photocathode exhibits a high photocurrent density of almost 30 mA cm −2 at 0 V against the reversible hydrogen electrode, the highest value so far. We demonstrate unassisted solar overall water splitting by combining the optimised Sb 2 Se 3 photocathode with a BiVO 4 photoanode, achieving a solar-tohydrogen efficiency of 1.5% with stability over 10 h under simulated 1 sun conditions employing a broad range of solar fluxes. Low-cost Sb 2 Se 3 can thus be an attractive breakthrough material for commercial solar fuel production.
In this manuscript, the inorganic perovskite CsPbIBr is investigated as a photovoltaic material that offers higher stability than the organic-inorganic hybrid perovskite materials. It is demonstrated that CsPbIBr does not irreversibly degrade to its component salts as in the case of methylammonium lead iodide but instead is induced (by water vapor) to transform from its metastable brown cubic (1.92 eV band gap) phase to a yellow phase having a higher band gap (2.85 eV). This is easily reversed by heating to 350 °C in a dry environment. Similarly, exposure of unencapsulated photovoltaic devices to water vapor causes current (J) loss as the absorber transforms to its more transparent (yellow) form, but this is also reversible by moderate heating, with over 100% recovery of the original device performance. NMR and thermal analysis show that the high band gap yellow phase does not contain detectable levels of water, implying that water induces the transformation but is not incorporated as a major component. Performances of devices with best efficiencies of 9.08% (V = 1.05 V, J = 12.7 mA cm and FF = 68.4%) using a device structure comprising glass/ITO/c-TiO/CsPbIBr/Spiro-OMeTAD/Au are presented, and further results demonstrating the dependence of the performance on the preparation temperature of the solution processed CsPbIBr films are shown. We conclude that encapsulation of CsPbIBr to exclude water vapor should be sufficient to stabilize the cubic brown phase, making the material of interest for use in practical PV devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.