Paper has been present in the world of analytical chemistry for centuries, but it seems that just a few years back it was rediscovered as a valuable substrate for sensors. We can easily list some of the countless advantages of this simple cellulosic substrate, including mechanical properties, three-dimensional fibrous structure, biocompatibility and biodegradability, easiness of production and modification, reasonable price, and availability all over the world. Those characteristics make paper a first-choice substrate for disposable sensors and integrated sensing platforms. Nowadays, numerous examples of paper-based sensors are being presented in the literature. This review describes some of the most prominent examples classifying them by type of detection: optical (colorimetric, fluorescence, surface-enhanced Raman spectroscopy, and transmittance methods) and electrochemical (voltammetric, potentiometric, and conductivity-based methods). We take a closer look at recent advances in immunoassays fabricated on paper, excluding simple lateral flow tests assembled on nitrocellulose. This review also summarizes the main advantages and disadvantages of the use of paper as a substrate for sensors, as well as its impact on their performance and application, presents a short history of paper in analytical chemistry, and discusses fabrication methods and available sources of paper.
Aims/hypothesis A high-fat dietary intake induces obesity and subclinical inflammation, which play important roles in insulin resistance. Recent studies have suggested that increased concentrations of circulating lipopolysaccharide (LPS), promoted by changes in intestinal permeability, may have a pivotal role in insulin resistance. Thus, we investigated the effect of gut microbiota modulation on insulin resistance and macrophage infiltration. Methods Swiss mice were submitted to a high-fat diet with antibiotics or pair-feeding for 8 weeks. Metagenome analyses were performed on DNA samples from mouse faeces. Blood was collected to determine levels of glucose, insulin, LPS, cytokines and acetate. Liver, muscle and adipose tissue proteins were analysed by western blotting. In addition, liver and adipose tissue were analysed, blinded, using histology and immunohistochemistry. Results Antibiotic treatment greatly modified the gut microbiota, reducing levels of Bacteroidetes and Firmicutes, overall bacterial count and circulating LPS levels. This modulation reduced levels of fasting glucose, insulin, TNF-α and IL-6; reduced activation of toll-like receptor 4 (TLR4), c-Jun N-terminal kinase (JNK), inhibitor of κ light polypeptide gene enhancer in B cells, kinase β (IKKβ) and phosphorylated IRS-1 Ser307; and consequently improved glucose tolerance and insulin tolerance and action in metabolically active tissues. In addition, there was an increase in portal levels of circulating acetate, which probably contributed to an increase in 5′-AMP-activated protein kinase (AMPK) phosphorylation in mice. We observed a striking reduction in crown-like structures (CLS) and F4/80 + macrophage cells in the adipose tissue of antibiotic-treated mice. Conclusions/interpretation These results suggest that modulation of gut microbiota in obesity can improve insulin signalling and glucose tolerance by reducing circulating LPS levels and inflammatory signalling. Modulation also appears to increase levels of circulating acetate, which activates AMPK and finally leads to reduced macrophage infiltration.
A simple procedure for the development of a range of polymeric ion-selective electrodes (ISEs) with low detection limits is presented. The electrodes were prepared by using a plasticizer-free methyl methacrylate-decyl methacrylate copolymer as membrane matrix and poly(3-octylthiophene) as intermediate layer deposited by solvent casting on gold sputtered copper electrodes as a solid inner contact. Five different electrodes were developed for Ag+, Pb2+, Ca2+, K+, and I-, with detection limits mostly in the nanomolar range. In this work, the lowest detection limits reported thus far with solid contact ISEs for the detection of silver (2.0 x 10(-9) M), potassium (10(-7) M), and iodide (10(-8) M) are presented. The developed electrodes exhibited a good response time and excellent reproducibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.