Paper has been present in the world of analytical chemistry for centuries, but it seems that just a few years back it was rediscovered as a valuable substrate for sensors. We can easily list some of the countless advantages of this simple cellulosic substrate, including mechanical properties, three-dimensional fibrous structure, biocompatibility and biodegradability, easiness of production and modification, reasonable price, and availability all over the world. Those characteristics make paper a first-choice substrate for disposable sensors and integrated sensing platforms. Nowadays, numerous examples of paper-based sensors are being presented in the literature. This review describes some of the most prominent examples classifying them by type of detection: optical (colorimetric, fluorescence, surface-enhanced Raman spectroscopy, and transmittance methods) and electrochemical (voltammetric, potentiometric, and conductivity-based methods). We take a closer look at recent advances in immunoassays fabricated on paper, excluding simple lateral flow tests assembled on nitrocellulose. This review also summarizes the main advantages and disadvantages of the use of paper as a substrate for sensors, as well as its impact on their performance and application, presents a short history of paper in analytical chemistry, and discusses fabrication methods and available sources of paper.
As diabetes is considered one of the biggest health care challenges of the coming decades substantial effort is being made to develop novel glucose monitoring systems, this includes thousands of articles which are being published every year. To the question in the title, we answer an unequivocal “yes” but maybe not necessarily in the areas where most of the published research is focused.
Electronic tongue systems are traditionally used to analyse: food products, water samples and taste masking technologies for pharmaceuticals. In principle, their applications are almost limitless, as they are able to almost completely reduce the impact of interferents and can be applied to distinguish samples of extreme complexity as for example broths from different stages of fermentation. Nevertheless, their applications outside the three principal sample types are, in comparison, rather scarce. In this review, we would like to take a closer look on what are real capabilities of electronic tongue systems, what can be achieved using mixed sensor arrays and by introduction of biosensors or molecularly imprinted polymers in the matrix. We will discuss future directions both in the sense of applications as well as system development in the ever-growing trend of low cost analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.