As diabetes
is considered one of the biggest health care challenges
of the coming decades substantial effort is being made to develop
novel glucose monitoring systems, this includes thousands of articles
which are being published every year. To the question in the title,
we answer an unequivocal “yes” but maybe not necessarily
in the areas where most of the published research is focused.
Electronic tongue systems are traditionally used to analyse: food products, water samples and taste masking technologies for pharmaceuticals. In principle, their applications are almost limitless, as they are able to almost completely reduce the impact of interferents and can be applied to distinguish samples of extreme complexity as for example broths from different stages of fermentation. Nevertheless, their applications outside the three principal sample types are, in comparison, rather scarce. In this review, we would like to take a closer look on what are real capabilities of electronic tongue systems, what can be achieved using mixed sensor arrays and by introduction of biosensors or molecularly imprinted polymers in the matrix. We will discuss future directions both in the sense of applications as well as system development in the ever-growing trend of low cost analysis.
In this Article, a rotating droplet system is used for simultaneous detection of dopamine and serotonin. Carbon nanoparticles functionalized with sulfonic groups on the electrode surface enables potential discrimination between the neurotransmitters and the most common interferences, whereas the efficient and low-volume hydrodynamic system helps to lower the detection limit toward physiologically relevant concentrations. Here, we present results with a 10 nM limit of detection for serotonin and a 100 nM to 2 μM linear response range from the system in a sample containing an equimolar concentrations of dopamine and serotonin and 0.5 mM concentration of both uric and ascorbic acids. Demonstrating the practical applicability of this method, we measure the concentration of serotonin in 70 μL of mice blood serum samples without additional pretreatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.