Dicamba and 2,4-D systems control many problematic weeds; however, drift to susceptible crops can be a concern in diverse production areas. Glufosinate-based systems are an alternative, but current recommended rates of glufosinate can result in variable control. Research was conducted in 2017 and 2018 to investigate the optimum time interval between sequential glufosinate applications and determine if the addition of glyphosate with glufosinate is beneficial for controlling Palmer amaranth and annual grasses in cotton. The interval between sequential applications (1, 3, 5, 7, 10, or 14 d or no second spray) was the whole plot and herbicide option (glufosinate or glufosinate plus glyphosate) was the subplot. Combined over herbicides, Palmer amaranth 15- to 20-cm tall (at four locations) was controlled 98% to 99% with sequential intervals of 1 to 7 d compared with 70% to 88% with intervals of 10 or 14 d. Lowest biomass weight and population densities were noted with 1- to 7-d intervals. Large crabgrass 15- to 20-cm tall (at five locations) was controlled 93% to 98% with glufosinate applications 3- to 7-d apart as compared with 76% to 81% with applications 10- to 14-d apart. Lowest biomass weights were observed with 1- to 7-d intervals. When glufosinate controlled grass less than 93%, adding glyphosate was beneficial. Neither interval between sequential applications nor herbicide option influenced cotton yield. Shorter time intervals between sequential application and including glyphosate can improve the effectiveness of a glufosinate-based system in managing Palmer amaranth and large crabgrass.
Nitrogen (N) deficiency limits net carbon assimilation rates (AN), but the relative N sensitivities of photosynthetic component processes and carbon loss mechanisms remain relatively unexplored for field-grown cotton. Therefore, the objective of the current study was to define the relative sensitivity of individual physiological processes driving N deficiency-induced declines in AN for field-grown cotton. Among the potential diffusional limitations evaluated, mesophyll conductance was the only parameter substantially reduced by N deficiency, but this did not affect CO2 availability in the chloroplast. A number of metabolic processes were negatively impacted by N deficiency and these effects were more pronounced at lower leaf positions in the cotton canopy. RuBP regeneration and carboxylation, AN, and gross photosynthesis were the most sensitive metabolic processes to N deficiency, whereas photosynthetic electron transport processes, electron flux to photorespiration, and dark respiration exhibited intermediate sensitivity to N deficiency. Among thylakoid specific processes, the quantum yield of PSI end electron acceptor reduction was the most sensitive process to N deficiency. It was concluded that AN is primarily limited by Rubisco carboxylation and RuBP regeneration under N deficiency in field grown cotton and the differential N-sensitivities of the photosynthetic process and carbon loss mechanisms contributed significantly to photosynthetic declines.
Agronomic crops engineered with resistance to 2,4-D or dicamba have been commercialized and widely adopted throughout the United States. Due to this, increased use of these herbicides in time and space has increased damage to sensitive crops. From 2014 to 2016, cucumber and cantaloupe studies were conducted in Tifton, GA to demonstrate how auxinic herbicides (2,4-D or dicamba), herbicide rate (1/75 or 1/250 field use), and application timing (26, 16, and 7 d before harvest (DBH) of cucumber; 54, 31, and 18 DBH of cantaloupe) influenced crop injury, growth, yield, and herbicide residue accumulation in marketable fruit. Greater visual injury, reductions in vine growth, and yield loss were observed at higher rates when herbicides were applied during early-season vegetative growth compared to late-season with fruit development. Dicamba was more injurious in cucumber while cantaloupe responded similarly to both herbicides. For cucumber, total fruit number and relative weights were reduced (16 to 19%) when either herbicide was applied at the 1/75 rate 26 DBH. Cantaloupe fruit weight was also reduced 21 and 10% when either herbicide was applied at the 1/75 rate 54 or 31 DBH, respectively. Residue analysis noted applications closer to harvest were more likely to be detectable in fruit than earlier applications. In cucumber, dicamba was detected at both rates when applied 7 DBH, while in cantaloupe it was detected at both rates when applied 18 or 31 DBH in 2016 and at the 1/75 rate applied 18 or 31 DBH in 2014. Detectable amounts of 2,4-D were not observed in cucumber but were detected in cantaloupe when applied at either rate 18 or 31 DBH. While early season injury will more likely reduce cucumber or cantaloupe yields, the quantity of herbicide residue detected will be most influenced by the time interval between the off-target incident and sampling.
Six on-farm studies determined the effects of a rolled rye cover crop, herbicide program, and planting technique on cotton stand, weed control, and cotton yield in Georgia. Treatments included: (1) rye drilled broadcast with 19-cm row spacing and a broadcast-herbicide program (2) rye drilled with a 25-cm rye-free zone in the cotton row and a broadcast-herbicide program (3) rye drilled with a 25-cm rye-free zone in the cotton row with PPI and PRE herbicides banded in the cotton planting row, and (4) no cover crop (i.e., weedy cover) with broadcast herbicides. At two locations, cotton stand was lowest with rye drilled broadcast; at these sites the rye-free zone maximized stand equal to the no-cover system. At a third location, cover crop systems resulted in greater stand, due to enhanced soil moisture preservation compared with the no-cover system. Treatments did not influence cotton stand at the other three locations and did not differ in the control of weeds other than Palmer amaranth at any location. Treatments controlled Palmer amaranth equally at three locations; however, differences were observed at the three locations having the greatest glyphosate-resistant plant densities. For these locations, when broadcasting herbicides, Palmer amaranth populations were reduced 82% to 86% in the broadcast rye and rye-free zone systems compared with the no-cover system at harvest. The system with banded herbicides was nearly 21 times less effective than the similar system broadcasting herbicides. At these locations, yields in the rye broadcast and rye-free zone systems with broadcast herbicides were increased 9% to 16% compared with systems with no cover or a rye-free zone with PPI and PRE herbicides banded. A rolled rye cover crop can lessen weed emergence and selection pressure while improving weed control and cotton yield, but herbicides should be broadcast in fields heavily infested with glyphosate-resistant Palmer amaranth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.