(1) Background: Extra virgin olive oil production is strictly influenced by the quality of fruits. The optical selection allows for obtaining high quality oils starting from batches with different qualitative characteristics. This study aims to test a CNN algorithm in order to assess its potential for olive classification into several quality classes for industrial purposes, specifically its potential integration and sorting performance evaluation. (2) Methods: The acquired samples were all subjected to visual analysis by a trained operator for the distinction of the products in five classes related to the state of external veraison and the presence of visible defects. The olive samples were placed at a regular distance and in a fixed position on a conveyor belt that moved at a constant speed of 1 cm/s. The images of the olives were taken every 15 s with a compact industrial RGB camera mounted on the main frame in aluminum to allow overlapping of the images, and to avoid loss of information. (3) Results: The modelling approaches used, all based on AI techniques, showed excellent results for both RGB datasets. (4) Conclusions: The presented approach regarding the qualitative discrimination of olive fruits shows its potential for both sorting machine performance evaluation and for future implementation on machines used for industrial sorting processes.
Extra virgin olive oil (EVOO) is a commercial product of high quality, thanks to its nutritional and organoleptic characteristics. The olives ripeness and the choice of harvest time according to their color and size, strongly influences the quality of the EVOO. The physical sorting of olives with machines performing rapid and objective optical selection, impossible by hand, can improve the quality of the final product. The aim of this study concerns the classification of olives into two qualitative classes, based on the maturity stage and the presence of external defects, through an industrial RGB optical sorting prototype, evaluating its performance and comparing the results with those obtained visually by trained operators. EVOOs obtained from classified olives were characterized through chemical, physical-chemical analysis and sensory profile. For the first time, the optoelectronic technologies in an industrial system was tested on olives to produce superior quality EVOO. The selection allows late harvest, obtaining oils with good characteristics from fully ripe and unripe fruits together, separating defective olives with appropriate calibration and training. Optoelectronic selection creates the opportunity to blend the obtained oils destined to different applications according to the needs of the consumer or producer, using a vanguard technology at low cost.
Cocoon sorting is one of the most labor-demanding activities required both at the end of the agricultural production and before the industrial reeling process to obtain an excellent silk quality. In view of the possible relaunch of European sericulture, the automatization of this production step is mandatory both to reduce silk costs and to standardize fiber quality. The described research starts from this criticality in silk production (the manual labor required to divide cocoons into different quality classes) to identify amelioration solutions. To this aim, the automation of this activity was proposed, and a first prototype was designed and built. This machinery is based on the use of three cameras and imaging algorithms identifying the shape and size of the cocoons and outside stains, a custom-made light sensor and an AI model to discard dead cocoons. The current efficiency of the machine is about 80 cocoons per minute. In general, the amelioration obtained through this research involves both the application of traditional sensors/techniques to an unusual product and the design of a dedicated sensor for the identification of dead/alive pupae inside the silk cocoons. A general picture of the overall efficiency of the new cocoon-sorting prototype is also outlined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.