Listeria monocytogenes is a ubiquitous opportunistic pathogen responsible for the well-known listeriosis disease. This bacterium has become a common contaminant of food, threatening the food processing industry. Once consumed, the pathogen is capable of traversing epithelial barriers, cellular invasion, and intracellular replication through the modulation of virulence factors such as internalins and haemolysins. Mobile genetic elements (plasmids and transposons) and other sophisticated mechanisms are thought to contribute to the increasing antimicrobial resistance of L. monocytogenes. The environmental persistence of the pathogen is aided by its ability to withstand environmental stresses such as acidity, cold stress, osmotic stress, and oxidative stress. This review seeks to give an insight into L. monocytogenes biology, with emphasis on its virulence factors, antimicrobial resistance, and adaptations to environmental stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.