In Himalaya, the temperature plays a key role in the process of snow and ice melting and, importantly, the precipitation phase changes (i.e., snow or rain). Consequently, in longer period, the melting and temperature gradient determine the state of the Himalayan glaciers. This necessitates the continuous monitoring of glacier surface melting and a well-established meteorological network in the Himalaya. An attempt has been made to study the seasonal and annual (October 2015 to September 2017) characteristics of air temperature, near-surface temperature lapse rate (tlr), in-situ glacier surface melting, and surface melt simulation by temperature-index (T-index) models for Sutri Dhaka Glacier catchment, Lahaul-Spiti region in Western Himalaya. The tlr of the catchment ranges from 0.3 to 6.5 °C km−1, varying on a monthly and seasonal timescale, which suggests the need for avoiding the use of standard environmental lapse rate (SELR ~6.5 °C km−1). The measured and extrapolated average air temperature (tavg) was found to be positive on glacier surface (4500 to 5500 m asl) between June and September (summer). Ablation data calculated for the balance years 2015–16 and 2016–17 shows an average melting of −4.20 ± 0.84 and −3.09 ± 0.62 m w.e., respectively. In compliance with positive air temperature in summer, ablation was also found to be maximum ~88% of total yearly ice melt. When comparing the observed and modelled ablation data with air temperature, we show that the high summer glacier melt was caused by warmer summer air temperature and minimum spells of summer precipitation in the catchment.
As part of the ongoing annual mass balance measurements on Batal and Sutri Dhaka glaciers, observations were made during peak ablation (August-September) season in 2013 to understand the response of debris covered and clean-ice (debris free) glacier surface to melting processes. Though, both the Batal and Sutri Dhaka glaciers have almost similar geographical disposition, Batal shows extensive debris cover (90% of the ablation area), while the latter is free from debris (only 5% of the ablation area). The thickness of debris in Batal glacier is inversely proportional to altitude, whereas Sutri Dhaka mostly experienced debris-free zone except snout area. Observation revealed that the vertical gradient of ablation rate in ablation area is contrastingly opposite in these two glaciers, reflecting significant control of debris thickness and their distribution over glacier surface on the ablation rates. While different thickness (2-100 cm) of debris have attenuated melting rates up to 70% of total melting, debris cover of <2 cm thickness has accelerated melting up to 10% of the total melting. Estimated melt ratio reveals that about 90% of the ablation area has experienced inhibited melting in Batal glacier, whereas only less than 5% ablation area of Sutri Dhaka has undergone inhibited melting. Comparison of topographical maps of 1962 with successive satellite images of the area demonstrates a terminus retreat of 373 ± 33.5 m and 579 ± 33.5 m for Batal and Sutri Dhaka glaciers for the period 1962-2013, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.