The paper investigates the stability of a power system with synchronverters. A synchronverter is a control strategy for voltage source converters that introduces virtual inertia by mimicking synchronous machines. The authors picked a commonly known IEEE 9 bus and IEEE 39 bus test case systems for the test case studies. The paper presents the power system’s modal analysis with Voltage Source Converters (VSCs) controlled as synchronverters, vector control, or Rate of Change of Frequency-based Virtual Synchronous Generator, thus comparing different approaches to VSC control. The first case study compares selected control algorithms, the IEEE 9 bus system, with one VSC in the paper. The results demonstrate the benefits of synchronverters over other control strategies. The system with synchronverters has a higher minimal damping ratio, which is proven to be the case by numerical simulations. In the second case study, the effects of virtual inertia placement were investigated. The computations showed that placement is indeed important, however, the control strategy is as important. Besides, the system with synchronverters exhibits better stability characteristics. The paper demonstrates that the application of synchronverters is feasible and can meet the demand for algorithms that bring the benefits of virtual inertia.
The paper investigates the application of Static Synchronous Compensator (STATCOM) with synchronverter control to enhance dynamic stability. Synchronverter is a control strategy for voltage source converters that emulates a synchronous generator, therefore providing virtual inertia. A thorough analysis of system stability with STATCOM controlled using synchronverter is presented. Furthermore, a comparison to vector control is provided. The analysis was conducted for a commonly known Single Machine Infinite Bus (SMIB) test case. The authors also compare the synchronverter and vector control performance using different mathematical tools such as eigenvalue analysis, numerical simulation, and lyapunov theory. Synchronverter algorithm improves the damping of the system, as small-signal analysis shows. The results of numerical simulations demonstrate the improvement of dynamic stability. Besides, the stability region also improves in the case of synchronverter. Finally, the paper demonstrates on the IEEE 39 bus system that the operation of STATCOM with a synchronverter control strategy is feasible and improves dynamic stability. Synchronverter brings the advantages of artificially adding inertia to the system, an essential issue in modern power systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.