The common occurrence of hearing loss in both humans and mice, and the anatomical and functional similarities of their inner ears, attest to the potential of mice being used as models to study inherited hearing loss. A large-scale, auditory screening project is being undertaken at The Jackson Laboratory (TJL) to identify mice with inherited hearing disorders. To assess hearing sensitivity, at least five mice from each inbred strain had auditory brainstem response (ABR) thresholds determined. Thus far, we have screened 80 inbred strains of mice; 60 of them exhibited homogeneous ABR threshold values not significantly different from those of the control strain CBA/CaJ. This large database establishes a reliable reference for normal hearing mouse strains. The following 16 inbred strains exhibited significantly elevated ABR thresholds before the age of 3 months: 129/J, 129/ReJ, 129/ SvJ, A/J, ALR/LtJ, ALS/LtJ, BUB/BnJ, C57BLKS/J, C57BR/cdJ, C57L/J, DBA/2J, I/LnJ, MA/MyJ, NOD/LtJ, NOR/LtJ, and SKH2/J. These hearing impaired strains may serve as models for some forms of human non-syndromic hearing loss and aid in the identification of the underlying genes.
In chloride-secretory epithelia, the basolateral Na-K2Cl cotransporter (NKCC1) is thought to play a major role in transepithelial Cl ؊ and fluid transport. Similarly, in marginal cells of the inner ear, NKCC1 has been proposed as a component of the entry pathway for K ؉ that is secreted into the endolymph, thus playing a critical role in hearing. To test these hypotheses, we generated and analyzed an NKCC1-deficient mouse. Homozygous mutant (Nkcc1 ؊/؊ ) mice exhibited growth retardation, a 28% incidence of death around the time of weaning, and mild difficulties in maintaining their balance. Mean arterial blood pressure was significantly reduced in both heterozygous and homozygous mutants, indicating an important function for NKCC1 in the maintenance of blood pressure. cAMP-induced short circuit currents, which are dependent on the CFTR Cl ؊ channel, were reduced in jejunum, cecum, and trachea of Nkcc1 ؊/؊ mice, indicating that NKCC1 contributes to cAMP-induced Cl ؊ secretion. In contrast, secretion of gastric acid in adult Nkcc1 ؊/؊ stomachs and enterotoxin-stimulated fluid secretion in the intestine of suckling Nkcc1 ؊/؊ mice were normal. Finally, homozygous mutants were deaf, and histological analysis of the inner ear revealed a collapse of the membranous labyrinth, consistent with a critical role for NKCC1 in transepithelial K ؉ movements involved in generation of the K ؉ -rich endolymph and the endocochlear potential.
Congenital thyroid disorders are often associated with profound deafness, indicating a requirement for thyroid hormone (T3) and its receptors in the development of hearing. Two T3 receptor genes, Tr alpha and Tr beta are differentially expressed, although in overlapping patterns, during development. Thus, the extent to which they mediate unique or redundant functions is unclear. We demonstrate that Tr beta-deficient (Thrb-/-) mice exhibit a permanent deficit in auditory function across a wide range of frequencies, although they show no other overt neurological defects. The auditory-evoked brainstem response (ABR) in Thrb-/- mice, although greatly diminished, displayed normal waveforms, which suggested that the primary defect resides in the cochlea. Although hypothyroidism causes cochlear malformation, there was no evidence of this in Thrb-/- mice. These findings suggest that Tr beta controls the maturation of auditory function but not morphogenesis of the cochlea. Thrb-/- mice provide a model for the human endocrine disorder of resistance to thyroid hormone (RTH), which is typically associated with dominant mutations in Tr beta. However, deafness is generally absent in RTH, indicating that dominant and recessive mutations in Tr beta have different consequences on the auditory system. Our results identify Tr beta as an essential transcription factor for auditory development and indicate that distinct Tr genes serve certain unique functions.
Plasma membrane Ca 2؉-ATPase isoform 2 (PMCA2) exhibits a highly restricted tissue distribution, suggesting that it serves more specialized physiological functions than some of the other isoforms. A unique role in hearing is indicated by the high levels of PMCA2 expression in cochlear outer hair cells and spiral ganglion cells. To analyze the physiological role of PMCA2 we used gene targeting to produce PMCA2-deficient mice. Breeding of heterozygous mice yielded live homozygous mutant offspring. PMCA2-null mice grow more slowly than heterozygous and wild-type mice and exhibit an unsteady gait and difficulties in maintaining balance. Histological analysis of the cerebellum and inner ear of mutant and wild-type mice revealed that null mutants had slightly increased numbers of Purkinje neurons (in which PMCA2 is highly expressed), a decreased thickness of the molecular layer, an absence of otoconia in the vestibular system, and a range of abnormalities of the organ of Corti. Analysis of auditory evoked brainstem responses revealed that homozygous mutants were deaf and that heterozygous mice had a significant hearing loss. These data demonstrate that PMCA2 is required for both balance and hearing and suggest that it may be a major source of the calcium used in the formation and maintenance of otoconia.Calmodulin-dependent plasma membrane Ca 2ϩ -ATPases (PMCAs) 1 are highly regulated enzymes that maintain the appropriate concentrations of intracellular free Ca 2ϩ by extruding Ca 2ϩ from the cell (1, 2). There are four mammalian PMCA isoforms (PMCA1-4), each encoded by a distinct gene (3-8), and additional diversity is generated by alternative splicing of exons encoding the regulatory domains (7, 9 -11). Variants of PMCA1 and PMCA4 are expressed in many different tissues and cell types, whereas variants of PMCA2 and PMCA3 exhibit a highly restricted distribution (5,8,12). This suggests that specific isoforms and splice variants serve different physiological functions. However, despite extensive information about PMCA structural diversity, expression patterns, and biochemical and regulatory characteristics, little is known about the functions of individual isoforms in vivo.Its unique biochemical characteristics (13, 14) and tissue specificity (5, 10 -12) suggest that PMCA2 might serve specialized physiological functions. In situ hybridization studies revealed that expression of PMCA2 is particularly high in Purkinje neurons of the cerebellum (15) and in the spiral ganglion nerves of the inner ear and outer hair cells of the cochlea (16). The observation that PMCA2 is the predominant isoform in outer hair cells (16) suggests that it might be the isoform that is expressed at high levels in stereocilia (17), which comprise hair bundles, the sensory organelles that mediate mechanoelectrical transduction by hair cells of both the vestibular and auditory systems (18,19). A recent study demonstrated that PMCA activity in the stereocilia of vestibular hair cells regulates hair bundle Ca 2ϩ concentrations and indicated that it ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.