This paper describes a shortened and improved version of the Speech in Noise (SIN) Test (Etymotic Research, 1993). In the first two of four experiments, the level of a female talker relative to that of four-talker babble was adjusted sentence by sentence to produce 50% correct scores for normal-hearing subjects. In the second two experiments, those sentences-in-babble that produced either lack of equivalence or high across-subject variability in scores were discarded. These experiments produced 12 equivalent lists, each containing six sentences, with one sentence at each adjusted signal-to-noise ratio of 25, 20, 15, 10, 5, and 0 dB. Six additional lists were also made equivalent when the scores of particular pairs were averaged. The final lists comprise the "QuickSIN" test that measures the SNR a listener requires to understand 50% of key words in sentences in a background of babble. The standard deviation of single-list scores is 1.4 dB SNR for hearing-impaired subjects, based on test-retest data. A single QuickSIN list takes approximately one minute to administer and provides an estimate of SNR loss accurate to +/-2.7 dB at the 95% confidence level.
Background Although cochlear implant patients are achieving increasingly higher levels of performance, speech perception in noise continues to be problematic. The newest generations of implant speech processors are equipped with preprocessing and/or external accessories that are purported to improve listening in noise. Most speech perception measures in the clinical setting, however, do not provide a close approximation to real-world listening environments. Purpose To assess speech perception for adult cochlear implant recipients in the presence of a realistic restaurant simulation generated by an eight-loudspeaker (R-SPACE™) array in order to determine whether commercially available preprocessing strategies and/or external accessories yield improved sentence recognition in noise. Research Design Single-subject, repeated-measures design with two groups of participants: Advanced Bionics and Cochlear Corporation recipients. Study Sample Thirty-four subjects, ranging in age from 18 to 90 yr (mean 54.5 yr), participated in this prospective study. Fourteen subjects were Advanced Bionics recipients, and 20 subjects were Cochlear Corporation recipients. Intervention Speech reception thresholds (SRTs) in semidiffuse restaurant noise originating from an eight-loudspeaker array were assessed with the subjects’ preferred listening programs as well as with the addition of either Beam™ preprocessing (Cochlear Corporation) or the T-Mic® accessory option (Advanced Bionics). Data Collection and Analysis In Experiment 1, adaptive SRTs with the Hearing in Noise Test sentences were obtained for all 34 subjects. For Cochlear Corporation recipients, SRTs were obtained with their preferred everyday listening program as well as with the addition of Focus preprocessing. For Advanced Bionics recipients, SRTs were obtained with the integrated behind-the-ear (BTE) mic as well as with the T-Mic. Statistical analysis using a repeated-measures analysis of variance (ANOVA) evaluated the effects of the preprocessing strategy or external accessory in reducing the SRT in noise. In addition, a standard t-test was run to evaluate effectiveness across manufacturer for improving the SRT in noise. In Experiment 2, 16 of the 20 Cochlear Corporation subjects were reassessed obtaining an SRT in noise using the manufacturer-suggested “Everyday,” “Noise,” and “Focus” preprocessing strategies. A repeated-measures ANOVA was employed to assess the effects of preprocessing. Results The primary findings were (i) both Noise and Focus preprocessing strategies (Cochlear Corporation) significantly improved the SRT in noise as compared to Everyday preprocessing, (ii) the T-Mic accessory option (Advanced Bionics) significantly improved the SRT as compared to the BTE mic, and (iii) Focus preprocessing and the T-Mic resulted in similar degrees of improvement that were not found to be significantly different from one another. Conclusion Options available in current cochlear implant sound processors are able to significantly improve speech understanding i...
This study investigated three issues involving corrections for individual ear acoustics in hearing aid prescriptions: (a) the extent to which inconsistencies in the sound-field reference position can affect comparative corrections for the real-ear unaided response (REUR); (b) the extent to which individual variability in the real-ear-to-coupler level difference (RECD) supports the use of individual measurements as opposed to an average-ear estimate; and (c) the adequacy of using KEMAR estimates of the effects of the location of the hearing aid microphone. In Experiment 1, KEMAR REURs using over-the-ear and under-the-ear reference positions were compared with KEMAR REURs using a center-of-head reference position. Maximum differences of 4–9 dB were found in the 1500- to 5000-Hz range, depending on test conditions. In Experiment 2, the ear canal response of an insert earphone was compared to the 2-cc coupler response of the same earphone to calculate the RECD. Individual RECDs for a population of hearing aid candidates were compared to the RECD for KEMAR. For 8 of the 15 subjects (9 of 18 ears), the RECD was more than 4 dB different from KEMAR at two or more third-octave frequencies between 500 and 4000 Hz. In Experiment 3, the effect of the location of the hearing aid microphone for in-the-ear (ITE) and in-the-canal (ITC) locations was compared with the over-the-ear (OTE) location for 18 ears and for KEMAR. The effects varied across individual ears, but all ears and KEMAR showed positive gain in the high frequencies for the ITE and ITC locations. The relevance of these results to hearing aid prescription practices is discussed.
The evolution of two new speech-in-noise tests is described, with particular emphasis on obtaining equivalency across lists. The Quick SIN Test uses IEEE sentences with female talker (L. Braida, personal communication on Harvard Phonetically Balanced Sentences developed at Harvard University during WWII, 2000); the BKB Test uses British Childrens sentences with male talker (Jon Shallop) [J. Bench and J. Bamford (eds.), Speech-Hearing Tests and the Spoken Language of Hearing-Impaired Children (Academic, London, 1979)]. In both cases, the Auditec of St. Louis four-talker babble recording was used to provide competing noise, and SNR-50 (signal-to-noise ratio for 50% correct key words in sentences) was estimated using the Tillman–Olsen recommendation [T. W. Tillman and W. O. Olsen, Modern Developments in Audiology, 2nd ed. (Academic, New York, 1973), pp. 37–74]. Normal-subject testing as well as hearing-impaired and cochlear-implant subject testing was used to check for equivalency across a range of signal-to-noise ratio performances. The standard deviation for single and multiple lists will be reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.