Emerging studies have demonstrated that curcumin is a promising investigational drug to treat both pain and wounds. The adequate control of severe burn pain, particularly over the long courses required for healing, as well improvements in burn wound healing are unmet clinical needs.
Ketamine is often used in burn patients to reduce opioid usage and decrease the hemodynamic and respiratory side effects. Although this study does not show a benefit of ketamine on PTSD development that was identified in previous work with a smaller sample number, it does support the conclusion that ketamine does not increase PTSD development in burned service members.
Burn injuries have been identified as the primary cause of injury in 5% of U.S. military personnel evacuated from Operations Iraqi Freedom and Enduring Freedom. Severe burn-associated pain is typically treated with opioids such as fentanyl, morphine, and methadone. Side effects of opioids include respiratory depression, cardiac depression, decrease in motor and cognitive function, as well as the development of hyperalgesia, tolerance and dependence. These effects have led us to search for novel analgesics for the treatment of burn-associated pain in wounded combat service members. Tetrodotoxin (TTX) is a selective voltage-gated sodium channel blocker currently in clinical trials as an analgesic. A phase 3 clinical trial for cancer-related pain has been completed and phase 3 clinical trials on chemotherapy-induced neuropathic pain are planned. It has also been shown in mice to inhibit the development of chemotherapy-induced neuropathic pain. TTX was originally identified as a neurotoxin in marine animals but has now been shown to be safe in humans at therapeutic doses. The antinociceptive effects of TTX are thought to be due to inhibition of Na(+) ion influx required for initiation and conduction of nociceptive impulses. One TTX sensitive sodium channel, Nav1.7, has been shown to be essential in lowering the heat pain threshold after burn injuries. To date, the analgesic effect of TTX has not been tested in burn-associated pain. Male Sprague-Dawley rats were subjected to a full thickness thermal injury on the right hind paw. TTX (8 μg/kg) was administered once a day systemically by subcutaneous injection beginning 3 days post thermal injury and continued through 7 days post thermal injury. Thermal hyperalgesia and mechanical allodynia were assessed 60 and 120 min post injection on each day of TTX treatment. TTX significantly reduced thermal hyperalgesia at all days tested and had a less robust, but statistically significant suppressive effect on mechanical allodynia. These results suggest that systemic TTX may be an effective, rapidly acting analgesic for battlefield burn injuries and has the potential for replacing or reducing the need for opioid analgesics.
In our prospectively designed, multicenter, observational, prehospital combat study, ketamine was the most commonly used analgesic drug. The most frequently observed combination of drugs was ketamine and morphine. The intravenous route was used for 55% of drug administrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.