Uniform GaN nanorod arrays are grown vertically by selective area growth on (left angle bracket 0001 right angle bracket) substrates. The GaN nanorods present six nonpolar {1⁻100} facets, which serve as growth surfaces for InGaN-based light-emitting diode quantum well active regions. Compared to growth on the polar {0001} plane, the piezoelectric fields in the multiple quantum wells (MQWs) can be eliminated when they are grown on nonpolar planes. The capability of growing ordered GaN nanorod arrays with different rod densities is demonstrated. Light emission from InGaN/GaN MQWs grown on the nonpolar facets is investigated by photoluminescence. Local emission from MQWs grown on different regions of GaN nanorods is studied by cathodoluminescence (CL). The core-shell structure of MQWs grown on GaN nanorods is investigated by cross-sectional transmission electron microscopy in both axial and radial directions. The results show that the active MQWs are predominantly grown on nonpolar planes of GaN nanorods, consistent with the observations from CL. The results suggest that GaN nanorod arrays are suitable growth templates for efficient light-emitting diodes.
After forever changing the drug discovery process in the pharmaceutical industry, combinatorial chemistry methodologies are increasingly being applied to the discovery and optimization of more efficient catalysts and materials (see picture). With the advent of new combinatorial synthesis and screening technologies, coupled with integrated data management systems, the application of these technologies to materials science and catalyst research holds tremendous potential and brings high expectations to this new and exciting field.
High speed coupling-modulation of a microring-based light drop structure is proposed, which removes severe signal distortion due to intracavity energy depletion and separates the modulation speed from the resonator linewidth restriction. Extinction ratio improvement from <1 dB to >20 dB with 40 Gb/s non-return-to-zero (NRZ) signals is obtained with 25 times smaller drive voltage. The tolerance to active ring propagation loss is increased from 5 dB/cm to over 25 dB/cm with less than 5% modulation bandwidth reduction. The possibility of obtaining 160 Gb/s NRZ signal with no more than 4 V drive voltage and less than 5 dB insertion loss is highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.