Four recent x-ray diffraction measurements of ambient liquid water are reviewed here. Each of these measurements represents a significant development of the x-ray diffraction technique applied to the study of liquid water. Sources of uncertainty from statistical noise, Q-range, Compton scattering, and self-scattering are discussed. The oxygen-hydrogen contribution to the measured x-ray scattering pattern was subtracted using literature data to yield an experimental determination, with error bars, of the oxygen-oxygen pair-distribution function, g(OO)(r), which essentially describes the distribution of molecular centers. The extended Q-range and low statistical noise of these measurements has significantly reduced truncation effects and related errors in the g(OO)(r) functions obtained. From these measurements and error analysis, the position and height of the nearest neighbor maximum in g(OO)(r) were found to be 2.80(1) Å and 2.57(5) respectively. Numerical data for the coherent differential x-ray scattering cross-section I(X)(Q), the oxygen-oxygen structure factor S(OO)(Q), and the derived g(OO)(r) are provided as benchmarks for calibrating force-fields for water.
Water has a number of anomalous physical properties, and some of these become drastically enhanced on supercooling below the freezing point. Particular interest has focused on thermodynamic response functions that can be described using a normal component and an anomalous component that seems to diverge at about 228 kelvin (refs 1-3). This has prompted debate about conflicting theories that aim to explain many of the anomalous thermodynamic properties of water. One popular theory attributes the divergence to a phase transition between two forms of liquid water occurring in the 'no man's land' that lies below the homogeneous ice nucleation temperature (TH) at approximately 232 kelvin and above about 160 kelvin, and where rapid ice crystallization has prevented any measurements of the bulk liquid phase. In fact, the reliable determination of the structure of liquid water typically requires temperatures above about 250 kelvin. Water crystallization has been inhibited by using nanoconfinement, nanodroplets and association with biomolecules to give liquid samples at temperatures below TH, but such measurements rely on nanoscopic volumes of water where the interaction with the confining surfaces makes the relevance to bulk water unclear. Here we demonstrate that femtosecond X-ray laser pulses can be used to probe the structure of liquid water in micrometre-sized droplets that have been evaporatively cooled below TH. We find experimental evidence for the existence of metastable bulk liquid water down to temperatures of 227(-1)(+2) kelvin in the previously largely unexplored no man's land. We observe a continuous and accelerating increase in structural ordering on supercooling to approximately 229 kelvin, where the number of droplets containing ice crystals increases rapidly. But a few droplets remain liquid for about a millisecond even at this temperature. The hope now is that these observations and our detailed structural data will help identify those theories that best describe and explain the behaviour of water.
Here we present diffraction data that yield the oxygen-oxygen pair distribution function, g(OO)(r) over the range 254.2-365.9 K. The running O-O coordination number, which represents the integral of the pair distribution function as a function of radial distance, is found to exhibit an isosbestic point at 3.30(5) Å. The probability of finding an oxygen atom surrounding another oxygen at this distance is therefore shown to be independent of temperature and corresponds to an O-O coordination number of 4.3(2). Moreover, the experimental data also show a continuous transition associated with the second peak position in g(OO)(r) concomitant with the compressibility minimum at 319 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.