Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that plays a role in the modulation of food intake and mood. In rodents, the actions of MCH are mediated via the MCHR1 receptor. The goal of this study was to investigate the effects of acute (1 h) and chronic (28 days) p.o. dosing of a novel MCHR1 antagonist,phenyl]methyl}(4-piperidyl))-4-methylphenyl]-2-methylpropanamide (SNAP 94847), in three mouse models predictive of antidepressant/anxiolytic-like activity: novelty suppressed feeding (NSF) in 129S6/SvEvTac mice and light/dark paradigm (L/D) and forced swim test (FST) in BALB/cJ mice. A significant increase in the time spent in the light compartment of the L/D box was observed in response to acute and chronic treatment with SNAP 94847. An anxiolytic/antidepressant-like effect was found in the NSF test after acute and chronic treatment, whereas no effect was observed in the FST. Because neurogenesis in the dentate gyrus has been shown to be a requirement for the effects of antidepressants in the NSF test, we investigated whether neurogenesis was required for the effect of SNAP 94847. We showed that chronic treatment with SNAP 94847 stimulated proliferation of progenitors in the dentate gyrus. The efficacy of SNAP 94847 in the NSF test, however, was unaltered in mice in which neurogenesis was suppressed by X-irradiation. These results indicate that SNAP 94847 has a unique anxiolytic-like profile after both acute and chronic administration and that its mechanism of action is distinct from that of selective serotonin reuptake inhibitors and tricyclic antidepressants.Depression and anxiety are major causes of disability worldwide. The major obstacles faced in treating these disorders with selective serotonin reuptake inhibitors (SSRI) are that the therapeutic response develops slowly (3-4 weeks), side effects often occur, and there is a significant percentage of nonresponders (Ϸ30%) (Wong and Licinio, 2001). Neuropeptide receptors may offer alternative therapeutic targets for depression and anxiety disorders (Griebel, 1999), particularly those selectively localized in brain regions Article, publication date, and citation information can be found at
Recent studies have elucidated the molecular mechanism of RORγT transcriptional regulation of Th17 differentiation and function. RORγT was initially identified as a transcription factor required for thymopoiesis by maintaining survival of CD4CD8 (DP) thymocytes. While RORγ antagonists are currently being developed to treat autoimmunity, it remains unclear how RORγT inhibition may impact thymocyte development. In this study, we show that in addition to regulating DP thymocytes survival, RORγT also controls genes that regulate thymocyte migration, proliferation, and T cell receptor (TCR)α selection. Strikingly, pharmacological inhibition of RORγ skews TCRα gene rearrangement, limits T cell repertoire diversity, and inhibits development of autoimmune encephalomyelitis. Thus, targeting RORγT not only inhibits Th17 cell development and function but also fundamentally alters thymic-emigrant recognition of self and foreign antigens. The analysis of RORγ inhibitors has allowed us to gain a broader perspective of the diverse function of RORγT and its impact on T cell biology.
Dual inhibition of angiotensin-converting enzyme (ACE) and neprilysin (NEP) by drugs such as omapatrilat produces superior antihypertensive efficacy but cause high incidence of angioedema. We examined whether dual inhibition of angiotensin AT1 receptor (ARB) and NEP (ARB-NEPI, valsartan-candoxatril) provides similar efficacy to omapatrilat without the risk of angioedema. Activity of test compounds at the targets was assayed using fluorescence-based enzyme assays (ACE, NEP, aminopeptidase P) or competition binding assays (AT1). Target engagement in vivo (ACE, AT1, and NEP) was quantified by measuring inhibition of angiotensin-pressor responses and potentiation of atrial natriuretic peptide-induced urinary cyclic guanosine monophosphate (cGMP) output in rats. Tracheal plasma extravasation (TPE) was used as a surrogate to assess propensity of compounds to promote upper airway angioedema. Antihypertensive efficacy in renin-dependent and -independent states was measured in spontaneously hypertensive rats and deoxycorticosterone acetate salt hypertensive rats, respectively. Administration of omapatrilat and coadministration of valsartan and candoxatril blocked angiotensin induced vasopressor responses and potentiated atrial natriuretic peptide-induced increase in urinary cGMP output. In spontaneously hypertensive rats, valsartan, omapatrilat, and valsartan-candoxatril combination all produced reduction in blood pressure to a similar extent, whereas candoxatril was ineffective. In deoxycorticosterone acetate rats, omapatrilat, candoxatril, and valsartan-candoxatril combination but not valsartan produced reduction in blood pressure. Antihypertensive doses of omapatrilat produced robust increases in TPE; by contrast, valsartan, candoxatril, or their combination did not increase TPE. Pretreatment with icatibant, a bradykinin B2 antagonist, abolished omapatrilat-induced TPE but not its antihypertensive effects. On the background of NEP inhibition, suppression of the renin-angiotensin system through ARB and ACE inhibition shows a similar antihypertensive efficacy but exerts differential effects on bradykinin metabolism and TPE indicative of reduced risk of angioedema. Thus, dual AT1 receptor blockade and NEP inhibition is potentially an attractive approach to retain the excellent antihypertensive effects of omapatrilat but with a superior safety profile.
The leucine-rich repeat kinase 2 (LRRK2) protein has been genetically and functionally linked to Parkinson’s disease (PD), a disabling and progressive neurodegenerative disorder whose current therapies are limited in scope and efficacy. In this report, we describe a rigorous hit-to-lead optimization campaign supported by structural enablement, which culminated in the discovery of brain-penetrant, candidate-quality molecules as represented by compounds 22 and 24. These compounds exhibit remarkable selectivity against the kinome and offer good oral bioavailability and low projected human doses. Furthermore, they showcase the implementation of stereochemical design elements that serve to enable a potency- and selectivity-enhancing increase in polarity and hydrogen bond donor (HBD) count while maintaining a central nervous system-friendly profile typified by low levels of transporter-mediated efflux and encouraging brain penetration in preclinical models.
Neuropeptide Y (NPY) regulates physiological processes via receptor subtypes (Y 1 , Y 2 , Y 4 , Y 5 , and y 6 ). The Y 5 receptor is well known for its role in appetite. Based on expression in the limbic system, we hypothesized that the Y 5 receptor might also modulate stress sensitivity. We identified a novel Y 5 receptorselective antagonist, Lu AA33810 [N-[[trans-4-[(4,5-dihydro ]-hPancreatic Polypeptide. In Sprague-Dawley rats subjected to the social interaction test, Lu AA33810 (3-30 mg/kg p.o.) produced anxiolyticlike effects after acute or chronic treatment. In Flinders sensitive line rats, chronic dosing of Lu AA33810 (10 mg/kg/day i.p.) produced anxiolytic-like effects in the social interaction test, plus antidepressant-like effects in the forced swim test. In Wistar rats exposed to chronic mild stress, chronic dosing of Lu AA33810 (3 and 10 mg/kg/day i.p.) produced antidepressant-like activity, i.e., normalization of stress-induced decrease in sucrose consumption. We propose that Y 5 receptors may function as part of an endogenous stress-sensing system to mediate social anxiety and reward or motivational deficits in selected rodent models.Neuropeptide Y (NPY) is a 36-amino acid transmitter belonging to the pancreatic polypeptide family, along with peptide YY (PYY) and pancreatic polypeptide (PP). NPY has widespread distribution throughout the central nervous system and periphery and has been demonstrated to modulate numerous physiological processes (e.g., appetite, metabolism, mood, and reproduction) via G protein-coupled receptors (primarily G i/o type). Receptor subtypes for NPY and relatedThe authors are affiliated with Lundbeck Research USA as either employees or paid collaborators. Lundbeck has a research program to study the therapeutic potential of the Y 5 receptor as a drug target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.