Purpose:Exome sequencing of a single individual for a clinical indication may result in the identification of incidental deleterious variants unrelated to the indication for testing (secondary findings). Given the recent availability of clinical exome testing, there is a limited knowledge regarding the disclosure preferences and impact of secondary findings in a clinical diagnostic setting. In this article, we provide preliminary data regarding the preferences for secondary findings results disclosure based on the first 200 families referred to Ambry Genetics for diagnostic exome sequencing.Methods:Secondary findings were categorized into four groups in the diagnostic exome sequencing consent: carrier status of recessive disorders, predisposition to later-onset disease, predisposition to increased cancer risk, and early-onset disease. In this study, we performed a retrospective analysis of patient responses regarding the preferences for secondary findings disclosure.Results:The majority of patients (187/200; 93.5%) chose to receive secondary results for one or more available categories. Adult probands were more likely than children to opt for blinding of secondary data (16 vs. 4%, respectively). Among responses for blinding, preferences were evenly scattered among categories.Conclusion:These data represent the unprecedented results of a large reference laboratory providing clinical exome sequencing. We report, for the first time, the preferences of patients and families for the receipt of secondary findings based on clinical genome sequencing. Overwhelmingly, families undergoing exome sequencing opt for the disclosure of secondary findings. The data may have implications regarding the development of guidelines for secondary findings reporting among patients with severe and/or life-threatening disease undergoing clinical genomic sequencing.
Objective Exome sequencing is a successful option for diagnosing individuals with previously uncharacterized genetic conditions, however little has been reported regarding its utility in a prenatal setting. The goal of this study is to describe the results from a cohort of fetuses for which exome sequencing was performed. MethodsWe performed a retrospective analysis of the first seven cases referred to our laboratory for exome sequencing following fetal demise or termination of pregnancy. All seven pregnancies had multiple congenital anomalies identified by level II ultrasound. Exome sequencing was performed on trios using cultured amniocytes or products of conception from the affected fetuses.Results Relevant alterations were identified in more than half of the cases (4/7). Three of the four were categorized as 'positive' results, and one of the four was categorized as a 'likely positive' result. The provided diagnoses included osteogenesis imperfecta II (COL1A2), glycogen storage disease IV (GBE1), oral-facial-digital syndrome 1 (OFD1), and RAPSN-associated fetal akinesia deformation sequence.Conclusion This data suggests that exome sequencing is likely to be a valuable diagnostic testing option for pregnancies with multiple congenital anomalies detected by prenatal ultrasound; however, additional studies with larger cohorts of affected pregnancies are necessary to confirm these findings.
Congenital generalized lipodystrophy (CGL) and pulmonary arterial hypertension (PAH) have recently been associated with mutations in the caveolin-1 (CAV1) gene, which encodes the primary structural protein of caveolae. However, little is currently known about how these CAV1 mutations impact caveolae formation or contribute to the development of disease. Here, we identify a heterozygous F160X CAV1 mutation predicted to generate a C-terminally truncated mutant protein in a patient with both PAH and CGL using whole exome sequencing, and characterize the properties of CAV1, caveolae-associated proteins and caveolae in skin fibroblasts isolated from the patient. We show that morphologically defined caveolae are present in patient fibroblasts and that they function in mechanoprotection. However, they exhibited several notable defects, including enhanced accessibility of the C-terminus of wild-type CAV1 in caveolae, reduced colocalization of cavin-1 with CAV1 and decreased stability of both 8S and 70S oligomeric CAV1 complexes that are necessary for caveolae formation. These results were verified independently in reconstituted CAV1−/− mouse embryonic fibroblasts. These findings identify defects in caveolae that may serve as contributing factors to the development of PAH and CGL and broaden our knowledge of CAV1 mutations associated with human disease.
BackgroundWith the expanded availability of next generation sequencing (NGS)-based clinical genetic tests, clinicians seeking to test patients with Mendelian diseases must weigh the superior coverage of targeted gene panels with the greater number of genes included in whole exome sequencing (WES) when considering their first-tier testing approach. Here, we use an in silico analysis to predict the analytic sensitivity of WES using pathogenic variants identified on targeted NGS panels as a reference.MethodsCorresponding nucleotide positions for 1533 different alterations classified as pathogenic or likely pathogenic identified on targeted NGS multi-gene panel tests in our laboratory were interrogated in data from 100 randomly-selected clinical WES samples to quantify the sequence coverage at each position. Pathogenic variants represented 91 genes implicated in hereditary cancer, X-linked intellectual disability, primary ciliary dyskinesia, Marfan syndrome/aortic aneurysms, cardiomyopathies and arrhythmias.ResultsWhen assessing coverage among 100 individual WES samples for each pathogenic variant (153,300 individual assessments), 99.7% (n = 152,798) would likely have been detected on WES. All pathogenic variants had at least some coverage on exome sequencing, with a total of 97.3% (n = 1491) detectable across all 100 individuals. For the remaining 42 pathogenic variants, the number of WES samples with adequate coverage ranged from 35 to 99. Factors such as location in GC-rich, repetitive, or homologous regions likely explain why some of these alterations were not detected across all samples. To validate study findings, a similar analysis was performed against coverage data from 60,706 exomes available through the Exome Aggregation Consortium (ExAC). Results from this validation confirmed that 98.6% (91,743,296/93,062,298) of pathogenic variants demonstrated adequate depth for detection.ConclusionsResults from this in silico analysis suggest that exome sequencing may achieve a diagnostic yield similar to panel-based testing for Mendelian diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.