In the mammalian brain, sensory cortices exhibit plasticity during task learning, but how this alters information transferred between connected cortical areas remains unknown. We found that divergent subpopulations of cortico-cortical neurons in mouse whisker primary somatosensory cortex (S1) undergo functional changes reflecting learned behavior. We chronically imaged activity of S1 neurons projecting to secondary somatosensory (S2) or primary motor (M1) cortex in mice learning a texture discrimination task. Mice adopted an active whisking strategy that enhanced texture-related whisker kinematics, correlating with task performance. M1-projecting neurons reliably encoded basic kinematics features, and an additional subset of touch-related neurons was recruited that persisted past training. The number of S2-projecting touch neurons remained constant, but improved their discrimination of trial types through reorganization while developing activity patterns capable of discriminating the animal's decision. We propose that learning-related changes in S1 enhance sensory representations in a pathway-specific manner, providing downstream areas with task-relevant information for behavior.
Scintigraphic imaging of metastatic melanoma lesions requires highly tumor-specific radiopharmaceuticals. Because both melanotic and amelanotic melanomas overexpress melanocortin-1 receptors (MC1R), radiolabeled analogues of alpha-melanocyte-stimulating hormone (alpha-MSH) are potential candidates for melanoma diagnosis. Here, we report the in vivo performance of a newly designed octapeptide analogue, [betaAla(3), Nle(4), Asp(5), D-Phe(7), Lys(10)]-alpha-MSH(3-10) (MSH(OCT)), which was conjugated through its N-terminal amino group to the metal chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) to enable incorporation of radiometals (e.g., indium-111) into the peptide. DOTA-MSH(OCT) displayed high in vitro MC1R affinity (IC(50) 9.21 nM). In vivo [(111)In]DOTA-MSH(OCT) exhibited a favorable biodistribution profile after injection in B16-F1 tumorbearing mice. The radiopeptide was rapidly cleared from blood through the kidneys and, most importantly, accumulated preferentially in the melanoma lesions. Lung and liver melanoma metastases could be clearly imaged on tissue section autoradiographs 4 h after injection of [(111)In]DOTA-MSH(OCT). A comparative study of [(111)In]DOTA-MSH(OCT) with [(111)In]DOTA-[Nle(4), D-Phe(7)]-alpha-MSH ([(111)In]-DOTA-NDP-MSH) demonstrated the superiority of the DOTA-MSH(OCT) peptide, particularly for the amount of radioactivity taken up by nonmalignant organs, including bone, the most radiosensitive tissue. These results demonstrate that [(111)In]DOTA-MSH(OCT) is a promising melanoma imaging agent.
Animal behavior originates from neuronal activity distributed across brain-wide networks. However, techniques available to assess large-scale neural dynamics in behaving animals remain limited. Here we present compact, chronically implantable, high-density arrays of optical fibers that enable multifiber photometry and optogenetic perturbations across many regions in the mammalian brain. In mice engaged in a texture discrimination task, we achieved simultaneous photometric calcium recordings from networks of 12-48 brain regions, including striatal, thalamic, hippocampal and cortical areas. Furthermore, we optically perturbed subsets of regions in VGAT-ChR2 mice by targeting specific fiber channels with a spatial light modulator. Perturbation of ventral thalamic nuclei caused distributed network modulation and behavioral deficits. Finally, we demonstrate multi-fiber photometry in freely moving animals, including simultaneous recordings from two mice during social interaction. High-density multi-fiber arrays are versatile tools for the investigation of large-scale brain dynamics during behavior.
We have previously shown that human epidermal keratinocytes express a functionally active µ-opiate receptor, which adds a new dimension to the recently developed research in neuroimmunodermatology and neurogenic inflammation in skin diseases. Human keratinocytes specifically bind and also produce β-endorphin, the endogenous µ-opiate receptor ligand. Using confocal imaging microscopy, we could now demonstrate that µ-opiate receptors are not only expressed in keratinocytes, but also on unmyelinated peripheral nerve fibers in the dermis and epidermis. Some of the peripheral nerve fibers also express the ligand β-endorphin. The keratinocytes positive for β-endorphin staining are clustered around the terminal ends of the unmyelinated nerve fibers. Therefore the opiate receptor system seems to be crucial in the direct communication between nerves and skin. The keratinocytes can influence the unmyelinated nerve fibers in the epidermis directly via secreting β-endorphin. On the other hand, nerve fibers can also secrete β-endorphin and influence the migration, differentiation and probably also the cytokine production pattern of keratinocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.