Biocompatible Ag@BSA microspheres were successfully synthesized via one-pot reaction in aqueous phase at room temperature by using BSA as soft templates. The individual Ag microsphere is composed of nanoscale Ag assemblies and shows enhanced radiation effects on gastric cancer cells.
This work aims at the development of a fast scanning method for organic pollutants with low-cost small Raman spectrometers. A gold nanoparticles-embedded alginate gel is prepared and applied as the substrate for surface enhanced Raman spectrometric detection of polycyclic aromatic hydrocarbons (PAHs). The target molecules are captured by the three-dimensional network of the alginate gel, and brought close to the hot spots generated by gold nanoparticles embedded in the gel. Significant Raman enhancement effects are observed in the analysis of four typical PAH compounds including pyrene, anthracene, fluorene and benzo(a)pyrene. Quantitative analysis of BaP shows a limit of detection of 0.365 nM using a low-cost small Raman spectrometer, which is comparable to published values. The practicability of the method is tested by analyzing PAHs in different water samples, offering a fast scanning method for PAHs.
Bovine serum albumin (BSA)-conjugated M(x)Se(y) (M = Ag, Cd, Pb, Cu) nanomaterials with different shapes and sizes were synthesized in water at room temperature by a protein-directed, solution-phase, green synthetic method. The method features very low energy consumption and nontoxic reagents with high yields of concentrated nanoparticles. The obtained bioconjugated nanoparticles have good dispersibility, bioactivity, and biocompatibility. In addition, various functional groups of protein on the surface of the nanocrystals are suitable for further biological interactions or couplings, which is very important for further biological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.