Herein, a nanoporous alumina was fabricated to use as a mold in transforming nanopillar structures onto a thin film polymer by thermal nanoimprint lithography (NIL). The size of the pores was successfully controlled by varying the applied voltages and etching time. These nanoporous structures were transferred to the Cyclo-olefin polymer (COP) film surface from the porous mold by a thermal nanoimprinting process. A plasmonic substrate was fabricated by sputtering a thin layer of gold onto this nanopillar polymer structure, and the refractive index response in a variety of media was evaluated. Finally, the biosensing capacity of this novel plasmonic substrate was verified by analysis of Human immunoglobulin and achieved a minimum detection limit of 1.0 ng/mL. With the advantages of mass production with consistent reproducibility stemming from the nanoimprint fabrication process, our gold-capped polymeric pillars are ready for the transition from academic interest into commercialization systems for practical use in diagnostic applications.
This study focuses on the corrosion mechanism of carbon steel exposed to an artificial geothermal brine influenced by carbon dioxide (CO2) gas. The tested brine simulates a geothermal source in Sibayak, Indonesia, containing 1500 mg/L of Cl−, 20 mg/L of SO42−, and 15 mg/L of HCO3− with pH 4. To reveal the temperature effect on the corrosion behavior of carbon steel, exposure and electrochemical tests were carried out at 70 °C and 150 °C. Surface analysis of corroded specimens showed localized corrosion at both temperatures, despite the formation of corrosion products on the surface. After 7 days at 150 °C, SEM images showed the formation of an adherent, dense, and crystalline FeCO3 layer. Whereas at 70 °C, the corrosion products consisted of chukanovite (Fe2(OH)2CO3) and siderite (FeCO3), which are less dense and less protective than that at 150 °C. Control experiments under Ar-environment were used to investigate the corrosive effect of CO2. Free corrosion potential (Ecorr) and electrochemical impedance spectroscopy (EIS) confirm that at both temperatures, the corrosive effect of CO2 was more significant compared to that measured in the Ar-containing solution. In terms of temperature effect, carbon steel remained active at 70 °C, while at 150 °C, it became passive due to the FeCO3 formation. These results suggest that carbon steel is more susceptible to corrosion at the near ground surface of a geothermal well, whereas at a deeper well with a higher temperature, there is a possible risk of scaling (FeCO3 layer). A longer exposure test at 150 °C with a stagnant solution for 28 days, however, showed the unstable FeCO3 layer and therefore a deeper localized corrosion compared to that of seven-day exposed specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.