The electrostatic potential of p+-n+ junctions, as in Esaki (tunnel) diodes, originates from the Coulomb potentials of ionized dopants in the depletion-layer, but it has been modeled so far based on uniform space-charge regions, ignoring the discrete and random dopant distribution. This model can explain well the band-to-band tunneling (BTBT) between the opposite bands of the quasineutral regions (conduction band in the n+-region and valence band in the p+-region). In this letter, we show that a BTBT transport model should contain the mechanism of tunneling via “inherent” localized bandgap-states, created by dopant-induced potential fluctuation, which becomes detectable as a parallel transport mechanism in nanoscale Esaki diodes. This is manifested by the observation of single-charge (SC) BTBT at 5.5 K in nanoscale Si Esaki diodes. Numerical analysis of nanoscale p+-n+ junctions with random dopant-atom distributions suggests that SC-BTBT is mediated by a potential dip created by a number of dopants “clustered” near each other, i.e., by a multiple-dopant cluster.
Following the rapid development of the electronics industry and technology, it is expected that future electronic devices will operate based on functional units at the level of electrically active molecules or even atoms. One pathway to observe and characterize such fundamental operation is to focus on identifying isolated or coupled dopants in nanoscale silicon transistors, the building blocks of present electronics. Here, we review some of the recent progress in the research along this direction, with a focus on devices fabricated with simple and CMOS-compatible-processing technology. We present results from a scanning probe method (Kelvin probe force microscopy) which show direct observation of dopant-induced potential modulations. We also discuss tunneling transport behavior based on the analysis of low-temperature I-V characteristics for devices representative for different regimes of doping concentration, i.e., different inter-dopant coupling strengths. This overview outlines the present status of the field, opening also directions toward practical implementation of dopant-atom devices.
Following the rapid development of the electronics industry and technology, it is expected that future electronic devices will operate based on functional units at the level of electrically active molecules or even atoms. One pathway to observe and characterize such fundamental operation is to focus on identifying isolated or coupled dopants in nanoscale silicon transistors, the building blocks of present electronics. Here, we review some of the recent progress in the research along this direction, with a focus on devices fabricated with simple and CMOScompatible-processing technology. We present results from a scanning probe method (Kelvin probe force microscopy) which show direct observation of dopant-induced potential modulations. We also discuss tunneling transport behavior based on the analysis of low-temperature I-V characteristics for devices representative for different regimes of doping concentration, i.e., different inter-dopant coupling strengths. This overview outlines the present status of the field, opening also directions toward practical implementation of dopant-atom devices.
We report on an interband tunneling nanoscale Si pn junction with high doping concentration of ~5.0×10 19 cm -3 . We find that transport characteristics show step-like structure, indicating that interband tunneling is strongly influenced by dopant-induced states of the depletion region. Also, we find a current peak observed in reverse bias condition at low temperatures, indicating that the dopant states can directly contribute to interband tunneling current. This is different from pn junctions with low doping concentration of ~1.0×10 18 cm -3 , in which individual dopant atoms work as electron traps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.