The tropical ginger genus Amomum (Zingiberaceae) has always posed challenges for classification based on morphological characters. Previous molecular phylogenetic studies showed Amomum to be paraphyletic but limited sampling and absence of the data of the type Amomum subulatum made it impossible to resolve the paraphyly and make nomenclatural changes. Here, Amomum is further investigated in a multi–marker phylogenetic framework using matK and nrITS including multiple accessions of the type, the genus Elettaria and additional accessions of Amomum, Alpinia, Elettariopsis, Geocharis, Geostachys and Hornstedtia. Amomum is shown to consist of nine clades and Alpinia of six. The genera Elettaria, Elettariopsis, Plagiostachys, and species in Hornstedtia are nested within these clades. Morphological studies of species previously subsumed in Amomum support recognition of new genera that correspond to well–delimited clades in the phylogenetic framework presented here. Recircumscription of the paraphyletic genus Amomum facilitates identification and creates nomenclatural stability. Three genera, Conamomum, Meistera and Wurfbainia, are resurrected, and three new genera Epiamomum, Lanxangia and Sundamomum are described, together with a key to the genera and a nomenclatural synopsis placing 384 specific names (incl. all synonyms) into the new generic framework. Of these 129 represent new combinations and 3 are replacement names. Types of Geocharis and Geostachys are designated. Further studies and specific sampling will be needed to resolve other branches of Alpinioideae containing other polyphyletic genera.
Drought is a major abiotic stress that negatively impacts plant growth and crop production. Among various techniques used to alleviate drought stress in plants, nanoparticle application is considered to be effective and promising. In this study, the responses of plants treated with iron, copper, cobalt, and zinc oxide nanoparticles (NPs) were analyzed in soybean under drought-induced conditions. The obtained results indicated that these metal-based NPs supported the drought tolerance of NP-treated plants. The desired physiological traits, viz., relative water content, drought tolerance index, and biomass reduction rate, were significantly improved, especially in iron NP-treated plants. At the molecular level, quantitative PCR analysis of several drought-responsive genes revealed a gene-, tissue-, and NP-dependent upregulation of gene expression. Iron NP treatment promoted the expression of all tested genes in roots; additionally, the expression of three drought-responsive genes increased in leaves of all NP-treated plants, while the expression of GmERD1 (Early Responsive to Dehydration 1) was induced in both roots and shoots under the four NP treatments tested. Our findings suggest that NP application can improve drought tolerance of soybean plants by triggering drought-associated gene expression.
Vietnam is an important crossroads within Mainland Southeast Asia (MSEA) and a gateway to Island Southeast Asia, and as such exhibits high levels of ethnolinguistic diversity. However, comparatively few studies have been undertaken of the genetic diversity of Vietnamese populations. In order to gain comprehensive insights into MSEA mtDNA phylogeography, we sequenced 609 complete mtDNA genomes from individuals belonging to five language families (Austroasiatic, Tai-Kadai, Hmong-Mien, Sino-Tibetan and Austronesian) and analyzed them in comparison with sequences from other MSEA countries and Taiwan. Within Vietnam, we identified 399 haplotypes belonging to 135 haplogroups; among the five language families, the sequences from Austronesian groups differ the most from the other groups. Phylogenetic analysis revealed 111 novel Vietnamese mtDNA lineages. Bayesian estimates of coalescence times and associated 95% HPD for these show a peak of mtDNA diversification around 2.5–3 kya, which coincides with the Dong Son culture, and thus may be associated with the agriculturally-driven expansion of this culture. Networks of major MSEA haplogroups emphasize the overall distinctiveness of sequences from Taiwan, in keeping with previous studies that suggested at most a minor impact of the Austronesian expansion from Taiwan on MSEA. We also see evidence for population expansions across MSEA geographic regions and language families.
Genome editing with engineered nucleases enabling site-directed sequence modifications bears a great potential for advanced plant breeding and crop protection. Remarkably, the RNA-guided endonuclease technology (RGEN) based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) is an extremely powerful and easy tool that revolutionizes both basic research and plant breeding. Here, we review the major technical advances and recent applications of the CRISPR-Cas9 system for manipulation of model and crop plant genomes. We also discuss the future prospects of this technology in molecular plant breeding.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) or dioxin, is commonly considered the most toxic man-made substance. Dioxin exposure impacts human health and diseases, birth defects and teratogenesis were frequently observed in children of persons who have been exposed to dioxin. However, the impact of dioxin on human mutation rate in trios has not yet been elucidated at the whole genome level. To identify and characterize the genetic alterations in the individuals exposed to dioxin, we performed whole genome sequencing (WGS) of nine Vietnamese trios whose fathers were exposed to dioxin. In total, 846 de novo point mutations, 26 de novo insertions and deletions, 4 de novo structural variations, and 1 de novo copy number variation were identified. The number of point mutations and dioxin concentrations were positively correlated (P-value < 0.05). Considering the substitution pattern, the number of A > T/T > A mutation and the dioxin concentration was positively correlated (P-value < 0.05). Our analysis also identified one possible disease-related mutation in LAMA5 in one trio. These findings suggested that dioxin exposure might affect father genomes of trios leading to de novo mutations in their children. Further analysis with larger sample sizes would be required to better clarify mutation rates and substitution patterns in trios caused by dioxin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.